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1. Assignment 1

1.1. Introduction

In this assignment we are to perform experiments on a DB2v9.7 server running on Amazon
Web Services to see the effects of using two different isolation levels (CS and RR), as well as
examining the impact of the new ”currently committed semantics” implemented in version
9.7 of DB2. We conduct various experiments to test the performance and correctness of the
various isolation levels and semantics and check with the DB2 documentation to test our
hypothesis.

1.2. Part 1: Threads and isolation levels

The experiment consists of testing whether or not there is a time difference between the CS
and RR isolation levels. See hypothesis and experiment setup below on how we do this.

1.2.1. Isolation levels in DB2

We shall first have a quick look at the two relevant isolations levels of DB2: repeatable read
(RR) and cursor stabillity (CS).

Repeatable Read (RR)
When using this isolation level, the DBMS puts locks on all rows affected by a given
transaction and holds them until it has been committed. Locks are not only held on the
returned rows, but on all rows affected (read, updated, deleted or inserted). Phantom
reads are impossible under this isolation level and the RR isolation level is considered
serializable.

Cursor Stabillity (CS)
When using CS as isolation level, locks are held on those rows that the ”cursor” (i.e. the
row currently being read/updated/inserted) points to. All other locks are released, as is
the one on the cursor when it moves on in the table. When changing a row, though, the
lock is held until commit time. Phantom reads are possible using this isolation level.

1.2.2. Hypothesis

Our hypothesis builds mostly on the documentation of DB2 and the way it describes the effects
of the two isolation levels. One would expect the RR isolation level to be more time-consuming
than CS, due to the fact that it attains a substantially larger amount of locks on our table.
However, it is not clear to what extent this increased amount of locks actually reflects on the
mean time of each run. With regards to the number of threads, we should be able to show
that the mean time of the runs decreases, as we add more swap threads to the pool1. Another

1This is mainly because the Python script times the entire process and not just the sum query.
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CHAPTER 1. ASSIGNMENT 1 1.2. PART 1: THREADS AND ISOLATION LEVELS

point here is that Amazon runs their instances on an Intel Xeon E5430 quad core processor2.
This means that when going up to 4 threads, we should see drastic reductions in execution
time. When using more than 4 threads we should begin to see a slow increase in execution
time again because of added thread overhead and more threads interfering with the sum query.

Also, we would expect the RR isolation level to deliver perfect results, as it prevents phan-
tom reads which are the main problem in the queries running in our setup (RR is actually
serialisable). CS, on the other hand, we expect not to deliver correct sums in every run. In
the CS case we also expect to see substantial fluctuations with the number of swap threads -
the more threads that can interfere with the sum query in shorter time, the more incorrect
sums.

1.2.3. Setup and experiments

All experiments have been conducted on the supplied AWS instance (ami-4b4ea222) on Ama-
zon Web Services, running DB2 version 9.7.1. We have used standard parameters for the
AMI (no EBS, standard security group, small size) and have otherwise followed the experi-
ment guide on the course homepage. All experiments have been run 50 times for the given
number of threads (see Appendix A for those statistics) and 5 times when trying all number
of threads from 1 to 50.3 All runs have used 100 swaps. Note also that we have decreased the
value of time.sleep(1) to time.sleep(0.1) (100 milliseconds) in order to be able to keep
runtime within reasonable limits. One could argue whether or not this command is relevant at
all, and indeed removing it yields interesting results. More on this later. Also, with a setting
of 1 second only the first batch of threads will actually influence the sum query, which – when
left uninterrupted – finishes within 0.2 seconds.

First we have a look at the two isolation levels CS and RR. We plot the mean time per run
as a function of the number of threads used. Benchmarks are shown in Figure 1.1. For the
50-runs, 1-5-10-25-50-thread experiment, please refer to Appendix A.

Next we have a look at the sums generated by the query in each run. We count the number
of sums in 50 runs equal to the result of a sum query run before executing the scripts and
calculate the ratio. We do this for 1, 5, 10, 25 and 50 threads. Benchmarks are shown in
Figure 1.2.

1.2.4. Observations and discussion

We begin by discussing the benchmarks on the mean time of the runs. We initially get a
substantial reduction when increasing the number of threads from only 1 to about 10. When
going above 10 threads, the mean increases again. This is coherent with our hypothesis, as
it is predictable that when we reach a certain number of threads, more of them will interfere
with the sum query and thread overhead will begin to have an effect. Additional experiments
on a local setup using DB2 version 9.5.2 have shown similar results. Also, we see that there is

2On Amazon use: less /proc/cpuinfo.
3As this would have taken forever, and 5 runs still give a fairly good statistical approximation.
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CHAPTER 1. ASSIGNMENT 1 1.2. PART 1: THREADS AND ISOLATION LEVELS

Figure 1.1.: AWS times for isolation levels CS and RR with sleep of 100 ms

Figure 1.2.: AWS sum ratios with sleep of 100 ms

actually a negligible difference between CS and RR, contrary to our stated hypothesis.4 Also,
we see that mean execution time is approximately cut in half when doubling the number of
threads in the beginning. When reaching 8-10 threads, however, the time increases again, al-
beit slowly. Again, this is probably due to the quad core processor executing the threads. Once

4Interestingly, when completely eliminating the time.sleep, mean execution time is linearly growing from 1
and upwards. See Figure A.3 in the appendix.
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we reach more than two threads per core, thread overhead and exchange becomes a factor. So,
mean execution time must also depend on something other than isolation levels or the number
of threads. The number of threads can very well be adjusted to minimise execution time on
a daily basis in a company; more threads do not necessarily imply gains in overall performance.

With regards to the number of correct sums, the results are pretty much as predicted: RR
delivers a perfect 1:1 ratio of correct sums, whereas CS fares much worse. However, the ratio
is unexpectedly low and compared to the negligible difference in execution time, in this case
there would be no reason whatsoever to choose less than RR for one’s isolation level. We also
notice that the ratio of correctness for CS drops, as the number of threads increases. The
more threads, the more interference with the sum query.

1.3. Part 2: Currently committed semantics

The ”currently committed semantics” (CCS), as introduced in DB2v9.7, defines a new stan-
dard for how the CS isolation level is handled. The parameter cur_commit handles this
behaviour and is enabled by default. Using currently committed semantics ensures that the
DBM can circumvent waiting for most deadlocks and lock timeouts by using the currently
committed value of an affected row instead of waiting for another process to finish modifying
it. In other words, the DBM can choose not to wait and use the previously committed value
instead. In our experiment this means that when the sum query tries to access a row that is
currently being updated by a swap thread, the DBM reads the committed (old) value from
the log instead. In this section we shall investigate whether or not there is an impact on
performance and correctness when disabling CCS.

1.3.1. Hypothesis

Disabling CCS will force the DBM to wait for locks instead of using the already committed
version of the data. We therefore expect the mean time per run to increase as compared to
the default CS isolation with CCS enabled.

Regarding the ratio of correct sums, we would initially expect it to decrease, as the sum
query is now forced to wait for the update threads, instead of being able to read from the
log directly. However, the sum query will finish at some point, probably before the remaining
threads have executed, hereby enforcing a time penalty as the number of threads exceed some
threshold.

1.3.2. Setup and experiments

We turn off CCS on the AWS instance with the following command:

> db2 update db cfg using cur_commit disabled

We then reconnect to the database and perform the same experiments as in Part 1, with a 10
ms sleep factor set in the writes.py script.5 As CCS only affects the CS isolation level, we
do not repeat the experiments for the RR isolation level (except for the ratio of correct sums
for reference). Results can be seen in Figure 1.3 and Figure 1.4. The 50-run experiment can
be seen in Figure A.4 in the appendix.

5Note that this is changes from the default 1000 ms. There is no apparent need for such a long sleep delay.
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CHAPTER 1. ASSIGNMENT 11.3. PART 2: CURRENTLY COMMITTED SEMANTICS

Figure 1.3.: AWS times for isolation level CS with CCS enabled/disabled.

Figure 1.4.: AWS sum ratios for isolation level CS with CCS disabled.

1.3.3. Observations and discussion

With respect to the ratio of correct sums for the CS isolation level, we see that in this case it
fares much worse than with CCS enabled. With the exception of using only one thread, the
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CHAPTER 1. ASSIGNMENT 1 1.4. CONCLUSIONS

ratio drops to around 0-2% correct sums with CCS disabled. Here the swap threads have a
much greater chance of interfering with the sum query, as this is now forced to wait for the
swap threads.

We do not, however, see an increase in execution time when turning off CCS (see Figure
1.3). This probably means that in our case the waiting time for accessing the old (committed)
data from the log is roughly the same as the time spent for the sum query waiting for the
swap threads to release their locks.

1.4. Conclusions

In this assignment we have investigated the effects of different isolation levels in DB2v9.7. We
have looked at performance measurements as well as measurements of correctness in a long
sum query, running whilst being interfered by a varying number of threads executing swaps
in the same table.

The results have shown a negligible difference in execution time for the two isolation levels
CS and RR, even when disabling currently committed semantics (CCS). One should, however,
be very careful when choosing the number of threads in the pool available to the DBMS, as
an increasing number of threads does not necessarily guarantee better performance. There is
a huge difference in the ratio of correct sums: RR gets a perfect score in every scenario, CS
gets a bad score with CCS enabled, and a close-to-zero score with CCS disabled.

We therefore conclude that there is no impact on performance when using these differ-
ent isolation levels, however there is a great impact on the correctness of the transactions,
especially when disabling CCS.
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2. Assignment 2

2.1. Introduction

The purpose of this assignment is to investigate performance fluctuations when varying cer-
tain parameters and settings regarding logging, locking and indexing in the DB2 database
system. We conduct various experiments to measure the impact of different parameters on
execution time and try to identify those parameters that have a real impact on performance.

All experiments have been conducted on a local instance of DB2 version 9.5.2 for Mac,
running on a 2.4 GHz Intel Core 2 Duo machine with 4GB of RAM and a 320GB S-ATA
5400rpm disk. Many of the results have been verified on an AWS instance as well.

For reference purposes we benchmark the host system to see what amount of throughput
it is theoretically capable of. Our system has the following theoretical performance:1

Main test Subtest Result

Memory Fill 8730.84 MB/sec

Memory Copy 4185.86 MB/sec

Disk Sequential Uncached Write [4K blocks] 47.52 MB/sec

Disk Sequential Uncached Read [4K blocks] 23.17 MB/sec

Disk Random Uncached Write [4K blocks] 1.06 MB/sec

Disk Random Uncached Read [4K blocks] 0.45 MB/sec

So, as our 100.000 tuples take up approximately 1.5MB of disk space, we should be able to
insert or update these in no time at all, depending on where on the disk we write, and if the
writes are sequential or random. Let’s see if we can actually achieve this performance.

2.2. Part 1: Writes

Overall the goal of this assignment is to tune the DB2 database to deliver the best possi-
ble performance. Therefore the first thing we do is to adjust the usual parameters given to
writes.py. We are also asked to state what the initial performance of a ”fresh” out-of-the-box
system is. We test insertion of 100.000 tuples into the accounts table, varying the number of
threads (1-50), the number of transactions (1 or N), and the isolation level. Some results can
be seen in Figure 2.1. From Figure 2.1 we see that using 3 threads yields optimal performance
when running under isolation level CS. Other isolation levels show almost completely similar
results. We therefore choose to use 3 threads and isolation level CS for the remainder of these
experiments (unless otherwise explicitly stated). Our benchmark execution time is somewhere

1Measured using Xbench 1.3.
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Figure 2.1.: Varying number of threads and transactions, CS.

around 40 seconds per run.

In this first part of the assignment we look at the impact of certain parameters on the write
performance of the DB2 system. Specifically we look at tuning log operations to speed up
inserts and tuning locking mechanisms to speed up updates.

2.2.1. (A): Logging

The log plays a very important role in tuning the performance of insert operations. Whenever
an update (insert/update) is committed to the database, a corresponding record of the event
is stored in the log – making it possible to roll back transactions and recover from crashes.
For this assignment we cannot change the disk on which the log is stored, but fortunately
DB2 offers a wealth of parameters that have an influence on logging.

Tuning parameters

We now briefly describe the parameters that are to be tuned to improve insertion time on our
DBMS. Descriptions are mainly from the DB2 documentation.

12



CHAPTER 2. ASSIGNMENT 2 2.2. PART 1: WRITES

Parameter Name Description value [range]

LOGBUFSZ Log buffer
size

Adjusts the size of the log buffer. A
large buffer can accommodate more
changes to the database before a write
to the actual log file is necessary.

8 [4 − 4096]

LOGFILSIZ Log file size This parameter adjust the size of the
log files. When using small log files
the system must more often switch
to new log files, creating an overhead
when issuing large transactions that
only have few commits. Such transac-
tions will quickly fill up a small log
file.

1000
[4 − 1048572]

MINCOMMIT Number of
commits to
group

This parameter allows you to delay
the writing of log records to disk un-
til a minimum number of commits
have been performed, helping reduce
the database manager overhead asso-
ciated with writing log records.

1 [1 − 25]

SOFTMAX Soft check-
point inter-
val

The SOFTMAX parameter controls the
interval with which the DBMS writes
dirty pages to disk. This is done by
specifying how many percent of a pri-
mary log file is needed to recover from
a crash at any point in time.

100 [1 − 100 ∗
logprimary]

We set each of these parameters by the command

> db2 update db cfg using <parameter> <value>

For each parameter variation we do 5 runs with 100.000 inserts using 3 threads and the CS
isolation level. As some of the parameters do not take effect until the next connection to the
database, we make sure to force a connect reset followed by a new database connection when
updating these parameters. Results of the experiments can be seen in Figures 2.2, 2.3, 2.4,
and 2.5. Also, results have been verified on the AWS instance.

Observations and discussion

One immediate observation is that none of the tested parameters seem to have a substantial
effect on the runtime of the insertion query. This is either due to experiment flaws or other
reasons. We will assume no experiment flaws, as the experiments have been run on three
different DB2 instances, using two different versions of DB2 and three different operating sys-
tems and hardware. Also, the experiments have been run with exactly the same parameters
and data. When running the experiments, db2top shows no bottlenecks and indicates that
possibly only one commit is done in each run – whatever the settings.

We therefore look to other reasons for the parameters not having any effect. We would have
expected the LOGBUFSZ and LOGFILSIZ parameters to have given some effect on the results,

13
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Figure 2.2.: Varying the LOGBUFSZ parameter.

Figure 2.3.: Varying the LOGFILSIZ parameter.

but it seems that the default setup of DB2 handles the insertions well; no matter the size and
number of log files. Also, one should take into consideration the fact that the data amount of
our query is only 1.5MB. This isn’t much and we would probably see more interesting results
if using a table that contained more attributes and data per tuple.

It also seems as though the script only does one commit of data, although specifying the
-xN parameter. This could be caused by an error in the writes.py script (although we have
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Figure 2.4.: Varying the MINCOMMIT parameter.

Figure 2.5.: Varying the SOFTMAX parameter.

not investigated this further).

2.2.2. (B): Locking

In this section we have a look at how different locking mechanisms affect many updates on
a table. Specifically we look at row level locking versus table level locking. Row level locking
means that when performing an update only the rows affected by the update are locked from

15



CHAPTER 2. ASSIGNMENT 2 2.2. PART 1: WRITES

other transactions modifying it. In a table level locking environment, whenever performing
an update, the entire table is locked; effectively preventing other transactions from modifying
the table.

In our case the update transaction uses only one commit and thereafter the table lock is
released. Also, we use only one thread and one repetition, having to reenable the table locks
in between each run. We issue the following command before executing writes.py to enforce
table level locking:2

> db2 "alter table accounts locksize table"

Our goal is to recreate Figure 2.8 from [1]. In order to do this we perform inserts and updates
of 100.000 tuples in the accounts table using writes.py with both row level locking and
table level locking. We repeat the experiments 5 times and quote mean execution time ratio
of row versus table level locking.

Figure 2.6.: Throughput (transactions per second) ratio of row versus table locking.

Observations and discussion

Results can be seen in Figure 2.6. We observe that the ratio is very close to 1 when performing
inserts. These are therefore unaffected by a potential switch to table locking by the DBMS.
When performing updates, however, the ratio drops as the times for performing updates
with table locks take substantially longer. This has to do with the fact that DB2 uses logical
logging (i.e. logging the logic that caused the update instead of logging before or after values).
This has an impact on the logging overhead when doing updates as opposed to inserts: the
logical logging overhead now surpasses the locking overhead, which corresponds perfectly with
(although not as marked as) the results in [1].

2Note that we do not use db2 +c "lock table accounts in exclusive mode" as this seems to halt execu-
tion by creating one or more deadlocks (which can be seen as a bottleneck in db2top). This may also be
an interesting thing to investigate, however not the purpose of this experiment.
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CHAPTER 2. ASSIGNMENT 2 2.3. PART 2: READS

2.3. Part 2: Reads

In this section we have a look at how different parameters and index types have an influence
on the speed with which we can read data from the database. First we do a simple benchmark
as to how fast we can scan one million tuples from the employee table. We then try to tune
three different parameters to reduce the time needed.

In parts (A), (B), and (C) we look at how different types of indexes and queries influence
read speeds.

2.3.1. A note on obtaining cold buffers

To enforce a cold buffer in sections (B), (C), and (D) we perform the following operations
(truncated for explanatory purposes):

> db2 connect reset

> db2stop

> Copy a 1.2GB file to clear the file system cache

> db2start

> db2 connect to tuning

> db2 flush package cache dynamic (flushes the query cache)

> db2pdcfg -db tuning -flushbp (flushes the buffer pages)

> python writes.py ...

2.3.2. (A): Tuning table scans

We will now take look at how fast we can get DB2 to do full scans of the employee table. We
begin by a benchmark run with standard configuration and then try to modify the schema
to obtain better speeds. Again, our system benchmark indicates that these reads should be
executed in no time at all (see the introduction). The initial benchmark table scan can be seen
in Figure 2.7. We note that scanning the 1.000.000 tuples in employees takes approximately
27 seconds. This, of course, compares miserably to what the host system itself is capable of.
Let’s try to improve...

Tuning parameters

When tuning reads, some of the most important changes to make is varying keys on the
schema and adding indexes. The last option we shall investigate even further in parts (B),
(C), and (D). Our query is very short:3

1 select max(ssnum) from employees;

There are not as many parameters for adjusting read speeds in DB2 as there are for adjusting
write speeds. The fact that we are using a warm buffer for this particular section suggests
maybe tuning the size of the database buffer, but our main focus shall lie on keys and indexes,
as these are the top-notch parameters for achieving better read speeds. Not having done any
schema changes in Part 1, in this part we focus our attention on trying the following variations:

3We have added the aggregate to enforce a full scan every time.
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Adding a primary key on ssnum

Description Expected effect

The schema is declared without any pri-
mary or foreign keys. If we make the (rel-
atively obvious) assumption that social
security numbers are unique in the table,
we can modify the schema to make the
attribute ssnum the primary key.

As such, the DBMS will usually try to
guess on some attribute being key and
create an index on it. In our case, when
we force ssnum to be the primary key, we
also hint very much to the DBM which
attribute to index. We do not, however,
have any control whatsoever over which
type of index the DBMS creates. For this
particular query, though, we should see
some improvement by hinting structure
to the DBMS. Also, having generated the
data with gentable.py’s last parameter
set to 1, the loaded data is prepped for
having a primary key on ssnum.

Adding clustering index on ssnum

Description Expected effect

Another approach, which doesn’t make
any assumptions about the distribution
and uniqueness of the ssnum attribute is
adding an index on it. The first one to try
is a clustering index, which pairs together
records with matching or same values of
ssnum. We use a slightly modified version
of the one handed out, using ssnum in-
stead of hundreds2.

For this particular query containing an
aggregate on the attribute indexed, the
DBMS should not need to access the data
pages at all. All the information needed is
contained in the index and even grouped
(clustered) together. Therefore we should
see this variation outperform the two first
variations, especially if the index is com-
pletely contained in memory.

Adding nonclustering index on ssnum

Description Expected effect

We add a nonclustering index on ssnum

to speed up the reads, again using
a slightly modified version of the one
handed out with the assignment.

Adding a nonclustering index on ssnum

should show similar results to those ob-
tained by adding the clustering index
as described above. However, there may
be a slightly bigger overhead from index
searching, as the desired values are not
necessarily grouped together, but there
should still be no need for disk access.

Adding covering index on ssnum

Description Expected effect

We add a covering index on ssnum and
name to speed up the reads.

The speedup using a covering (or com-
posite) index is harder to predict. We
would expect it to show results similar
to those using the nonclustering index,
perhaps even slightly worse.

18
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We conduct each experiment with 200 queries and measure mean time in 10 runs on a
warm buffer. The throughput ratio of the best performing experiment is set to 1.0 and the
others are calculated accordingly. Results can be seen in Figure 2.7.

Figure 2.7.: Throughput ratio of of scan, primary key, and different index types.

Observations and discussion

Results can be seen in Figure 2.7. We observe that most of the results are as expected: we
see a miserable performance when using the standard scan without keys or indexes. When
adding a primary key on ssnum, we see a drastic increase in performance, and even more so
when adding an index on ssnum instead. The different indexes fare almost equally well, with
a slight advantage for the covering index (which is slightly odd when keeping in mind that
it is actually a nonclustering index with an extra attribute). This may root in DB2 handling
these two types of indexes in different ways – something which we cannot investigate here.

Overall, though, we see that adding an index on the ssnum attribute helps improve read
speeds by up to a factor of 300.

2.3.3. (B): Clustering indexes

In this section we look at the effect of clustering indexes, with specific attention put on
multipoint queries. Again we use the employee table with 1.000.000 tuples, use 200 instances
of the query_multipoint.sql query, and measure mean execution time mmean in 10 runs.
The throughput tclustered of the clustered scan is set to have ratio 1.0, and the other throughput
ratios are calculated as rother = 200

mmean·tclustered . Our goal is to recreate Figure 3.6 from [1].

Hypothesis

Using a clustering index on the hundreds2 attribute should show a substantial benefit com-
pared to a non-clustered one, which again would be beneficial over not having an index at all.
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Using the clustering index causes records with matching or nearby values of the hundreds2

attribute to be easily accessible when doing table scans. The non-clustering index should fare
somewhat worse, although still better (faster at lookups) than having none at all.

Figure 2.8.: Throughput ratio with focus on clustering indexes.

Observations and discussion

Results can be seen in Figure 2.8. The ”Out-of-the-box” benchmark is the same as the ”No
index” result. We see that the clustering index fares the best, compared to having no index at
all. The nonclustering index, however, performs close to that of the clustering index, indicating
that either something has gone wrong (in the positive sense), or a lot has happened in DB2
since version 7.1 that the book used, compared to version 9.5.2 that we have used. Also, our
multipoint query takes out 10.000 records (1%) out of the 1.000.000 in the table instead of
the 100 records (0.01%) in the book - this may also have an impact on the performance of the
indexes. Other than this our results are pretty much in correspondence with our hypothesis.

2.3.4. (C): Covering indexes

In this section we focus our attention on various covering indexes, again using the
query_multipoint.sql query. Our goal is to recreate Figure 3.11 from [1]. We again use
reads.py with 200 queries and measure mean time in 10 runs using a cold cache.

Hypothesis

Following the results from [1] we expect to see the good covering index fare best with our
multipoint query, followed by the clustering index, the nonclustering index and finally the
table scan (no index).4 The reason for the composite (good covering) index to fare good

4As we have not been given a prefix match query for this assignment, we have used the multipoint query
instead. This may have an impact on performance, as a prefix match query possibly will be able to utilise
a covering index better than a multipoint query.
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is the fact that it packs records with the same values of hundreds2 together, whereas the
nonclustering index, for instance, packs them more or less randomly.

Figure 2.9.: Throughput with focus on covering indexes.

Observations and discussion

Results can be seen in Figure 2.9. We observe that overall we get similar results to the figure
in [1], although the difference between the nonclustering and clustering indexes is hardly
noticeable. The clustering index should do far better and be on par with the covering index.
This may have to do with not using a prefix query, otherwise we have no real explanation for
this. Our hypothesis is pretty much correct.

2.3.5. (D): Selectivity

In this section we look at how selectivity (i.e. the percentage of the table returned by a
query) affects throughput for a nonclustering index as opposed to a regular table scan. In
the experiment we use query_range.sql to vary the percentage of data returned by the
query. We do this by changing the value of the constant p in hundreds2 <= p in the query.
A value of p = 5 returns 5% of the data in the 1.000.000 records in the table. We conduct
this experiment with both a cold and a warm buffer. Again, our goal is to recreate a figure
from the book - in this case Figure 3.12.

Hypothesis

As stated in the book: when records of the table are stored consecutively on the disk, at some
point a full table scan will fare better than a nonclustering index. In the book this turning
point is reached at approximately 15% selectivity. We expect to see similar results in our own
experiments, except when using a warm cache. In this case disk seeks should not be necessary
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at all, since the entire table should be able to fit in memory. Here the overhead of the index
will play a more important role, but not one as significant as using a cold buffer, where we
force disk reads, if the required data is not in memory.

Figure 2.10.: Throughput when varying selectivity and index on/off.

Observations and discussion

Results can be seen in Figure 2.10. We see results somewhat vaguely similar to the figure
in [1]: there is a turning point of approximately 10% selectivity, after which the scan fares
better than the index. Also, not surprisingly the warm buffer fares better than the cold one,
although not as marked as expected. Also, the difference when using low selectivity and a
warm buffer is close to zero. The clear difference from Figure 3.12 in [1] is the fact that
when increasing selectivity, the throughput also increases. We have not been able to find a
reasonable explanation for this in the textbook or the DB2 documentation.

From the results we also observe – as expected – that the difference between index and scan
is more marked when utilising a cold buffer and a large selectivity. Here the overhead of one or
more (most likely only one) disk seeks has a greater impact than that of the index overhead
and therefore the index wins over the scan. So, apart from the curves going up instead of
down, the results confirm (albeit vaguely) our hypothesis.

2.4. Part 3: Problem Log

Numerous problems have been encountered while doing this assignment:

• When tuning parameters, many of the efforts have yielded uninteresting results: nothing
happened when adjusting the parameters. This is extremely frustrating, as you would
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expect that tuning a database (which this course is all about!) should have an effect –
otherwise the course doesn’t make sense. This may lie in not conducting the experiments
properly, but first of all we are not the only ones with this problem, and secondly we
have tested on three different instances and hardware platforms.

• Finding tuning knobs for tuning the reads is rather hard. It was fairly straightforward
finding some for tuning inserts and the logging, but the obvious parameters for tuning
reads are keys and indexes.

• Most of the experiments had already been conducted when someone found a potential
bug in the reads.py script (the missing ”conn”). This must not happen one week before
the due date of the assignments! There has been no time for redoing the experiments
and we do not know, whether this would have yielded completely different results.

• There was no prefix match query to help the experiment towards resembling the figures
in the book.

• It took very long time to figure out how to get a cold buffer for the reads. A more
thorough guide on this particular matter would have been helpful. Also, writing the
shell scripts for running with a cold buffer took a long time, after having figured out
how to obtain one.
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3. Assignment 3

3.1. Introduction

In this assignment we take a look at two important factors in designing modern database
systems: query tuning and row compression. In the first part we are given a query to optimise.
We do this using different techniques presented in the course and use the db2expln tool to
monitor the estimated costs of executing the query.

In the second part we investigate the potential performance and storage benefits derived
from using the row compression feature in DB2. We specifically look at how row compression
can reduce storage requirements, as well as potentially speed up read and write operations, if
the overhead of the compression algorithm is not larger than the overhead of performing disk
operations.

All experiments have been conducted on a local instance of DB2 version 9.5.2 for OSX,
running on a 2.4 GHz Intel Core 2 Duo machine with 4GB of RAM and a 320GB S-ATA
5400rpm disk. None of the experiments have suffered from lack of disk space or memory.

3.2. Part 1: Query tuning

Our starting point is the following query on the employees table:

1 select distinct e1.ssnum , e1.name

2 from employees e1, employees e2

3 where e1.hundreds1 > e2.hundreds1 or e1.hundreds2 < e2.hundreds2

4 and sqrt(bigint(e2.lat - e1.lat)* bigint(e2.lat - e1.lat) +

5 bigint(e2.long - e1.long)* bigint(e2.long - e1.long)) < 10000

The hundreds1 attribute describes the attendance rate of the employee, hundreds2 de-
scribes the sickness rate, and the lat and long attribute describe the position (in latitudes
and longitudes) of the employee. Thus, this query selects the social security numbers and
names of those employees who have a higher attendance or lower sickness rate than their
neighbouring colleagues (where neighbouring is defined as being within a 10km radius). We
shall now try to optimise this query in order to get it to run faster.

PLEASE NOTE:
After having done the below experiments, it came to our attention that the query was missing
parenthesis around the OR condition, causing it to return very different results. As we did not
have time do redo the experiments, they have been conducted on the above (incorrect) query.

3.2.1. (A): Baseline performance

We begin with loading a fresh copy of the employees table, without any indexes or primary
keys. We then update the database statistics using the following command:
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> db2 reorgchk update statistics on table <username>.employees

With updated statistics we can use the db2expln tool to estimate the costs of the above query
(original.sql):

> db2expln -f original.sql -d tuning -t -g

The last parameter enables a graph of the optimiser plan, making it easier to see the actual
work done by the DBMS when executing the query. From the output of this command we
can extract the estimated cost and cardinality of the query:

[...]

Estimated Cost = 1044677,312500

Estimated Cardinality = 1000000,000000

[...]

The value of ”Estimated Cost” is measured in ”timerons”: an abstract unit of measure that
indicates the cost for the DBMS to execute the query (in terms of CPU time, disk access,
etc.). We shall try to minimise the value of this cost.

With respect to the cardinality, the DBMS indicates to us that almost all rows are returned.
This makes good sense, due to the fact that one of the clauses on hundreds1 or hundreds2

will very frequently be true, as the attributes are uniformly distributed.1

3.2.2. (B): Possible performance issues

When analysing the query in its original form, we get the following optimiser plan:

Optimizer Plan:

Rows

Operator

(ID)

Cost

1e+06

RETURN

( 1)

1,04468e+06

|

1e+06

TBSCAN

( 2)

1,04468e+06

|

1e+06

SORT

( 3)

1,03732e+06

1Executing the query returns 999.898 tuples, so the estimate is actually quite precise.
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|

1e+06

NLJOIN

( 4)

983690

/ \-\

1e+06 *

TBSCAN |

( 5) 1e+06

12172,5 Table:

| ANDERS

1e+06 EMPLOYEES

Table:

ANDERS

EMPLOYEES

We see that the dominating cost factors are the NLJOIN (nested loop join) and the following
SORT. Also, we observe that the optimiser deals with all of the one million rows in every step
of the process. In the following section we shall investigate how to reduce the cost of these
operations or get the query optimiser to choose other equivalent means of execution.

Initially, when only looking at the query, the following possible performance issues can be
identified:

• There is a potential O(n2) performance bottleneck if the query processor should choose
to do a Cartesian product on employees with itself. This would result in 1.000.0002

tuples in the result table. As one would expect, it seems that the query optimiser
chooses not to do so and performs a join instead.

• There are no indexes or primary keys present to help the DBMS perform the two table
scans and the sort in the optimiser plan.

• The DISTINCT operator forces a sort on the result set. In our case, the data has been
generated with gentable.py set to use ssnum as a key, although the schema does not
declare it as such. Therefore the DISTINCT should in theory be unnecessary, if we choose
to set a primary key on ssnum.

• There is no need to declare the variables for calculating distances as bigint’s. This may
cause a memory overhead when doing the many calculations needed.

3.2.3. (C): Actions to take

There are several different actions to take in order to decrease the estimated cost of the query.
These include:

• In the schema, the ssnum attribute has not been declared a primary key although the
data has been generated according to this (which also makes perfect sense in the real
world). Adding a primary key on ssnum might hint to the optimiser that it can save the
DISTINCT operator, as the result tuples are already distinct.
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• Adding various indexes may help speed up or even eliminate some of the table scans.

• Rewriting the query to perform better. However, despite intense efforts we have not been
able to realise, how this may be done. There are no nested subqueries, no unnecessary
DISTINCTs (see above), no temporary tables (other than the sort table the optimiser
creates), no materialised views, no ORDER BY, no nothing. We have also tried using
various different joins on the conditions in the query, but all having no effect.

• Remove the bigint’s from the query.

3.2.4. (D): Quantifying experiments

Setting ssnum as primary key

We change the schema in init.sql to set ssnum as primary key. This should in theory
eliminate the need to sort the table before returning the relevant tuples. Luckily, we see from
the new optimiser plan that the cost decreases and the cardinality remains the same. The
SORT and TBSCAN also disappear:

[...]

Estimated Cost = 983690,500000

Estimated Cardinality = 1000000,000000

[...]

Optimizer Plan:

Rows

Operator

(ID)

Cost

1e+06

RETURN

( 1)

983690

|

1e+06

NLJOIN

( 2)

983690

/ \-\

1e+06 *

TBSCAN |

( 3) 1e+06

12172,5 Table:

| ANDERS

1e+06 EMPLOYEES

Table:

ANDERS

EMPLOYEES
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Creating indexes

We create three index for the employees table:

1 create index ssnumcl on employees (ssnum) cluster pctfree 0;

2 create index myindex1 on employees (hundreds1 ,hundreds2 );

3 create index myindex2 on employees (lat , long);

After updating statistics, we get exactly the same estimated costs as with not having the
indexes present. If we, alongside these indexes, set ssnum as primary key, we get the same
cost as just setting the primary key.

Removing the bigint’s from the query

We simply remove the four bigint declarations from the query. Doing this, the query execu-
tion plan remains the same, but the overall cost and cardinality of the query from db2expln

now becomes:

[...]

Estimated Cost = 1042598,562500

Estimated Cardinality = 1000000,000000

[...]

which is actually a slight reduction.

Quantifying experiments and hypothesis

In order to justify the proposed enhancements we conduct experiments to see, whether the
costs predicted by the db2expln utility are actually correct on real-life tests. We use the
reads.py script from assignment 2 using only one query (we leave it up to the reader to
guess which one), and repeat the experiment 10 times to get more precise results and to
prevent outliers from cluttering conclusions. We have tested the following four scenarios:

• The baseline performance of the query. We expect this baseline performance to take
some time.

• Adding indexes to the schema. We add the indexes mentioned above to the schema.
These indexes have been chosen to help the DBMS do the join on these attributes.2

• Setting a primary key on the ssnum attribute. This should in theory prevent the sort in
the optimiser plan, and maybe even eliminating the DISTINCT operator.

• Removing the bigint declarations should (according to db2expln) give us a slight
reduction in execution time, most likely due to the calculations in the query requiring
less memory overhead.

2Numerous different indexes have been tried, but they all seem to fare on par with these two.
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Figure 3.1.: Varying schema enhancements.

Observations and discussion

Results can be seen in Figure 3.1. The baseline performance of the query is slow, as expected:
around 36 seconds to retrieve the 999.898 tuples. If we add indexes, the query improves only
by a fraction. This is quite interesting, as we would have expected to see drastic improvements
when adding relevant indexes. Finally, we also see that removing the bigint declarations have
a small, but yet noticeable improvement on execution time, as expected.

It is not obvious how to explain this behaviour, especially not keeping in mind the results
of the query when adding a primary key on ssnum. This apparently boosts the execution of
the query from around 36 seconds to only 5.6 seconds, which is quite an improvement. The
primary key added will help execute table scans in general, but the effect of this schema
addition is surprising and unexplainable.

The behaviour of these enhancements is puzzling and unexpected and we would be quick
to put it down to flaws in the experiment. We are not able to see where these flaws might
occur, though.3

We have not tried combining the above modifications, but we believe that this will improve
further on the execution.

3.3. Part 2: Compression

In this part we will take a look at how row compression in DB2 possibly can improve perfor-
mance of I/O intensive operations as well as storage requirements. In section (A) we describe
the potential benefits and drawbacks of using row compression, and in section (B) we conduct

3Except maybe for working on the wrong query...
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experiments that try to prove or disprove the points stated in section (A).

3.3.1. (A): Advantages and drawbacks

Row compression works by identifying multiple instances of the same data and using this to
compress these instances in the table to save space. The translation between the compressed
and uncompressed versions of the data occurs using a dictionary taking up little space and
stored elsewhere in the table (usually also always in-memory). Using compression therefore
has some obvious advantages:

• Depending on the type and organisation of the data in the table, the documentation
states that savings of 50% or more can be achieved by using compression. This is of
course achieved by compressing similar data in the table.

• The above holds also for memory usage, as the data is also loaded compressed into
memory.

• When data takes up less space on a disk, the I/O needed to fetch an amount of tuples
from disk decreases, as the compressed data of course takes up less space and therefore
can be loaded faster.

There are, however, also some possible drawbacks from using row compression:

• If the data is of a such nature that almost no tuples contain the same data, compression
algorithms will not find any work to do. In this case a CPU overhead may occur, when
a compression algorithm desperately scans a table for something to do.

• When compressing and decompressing data, there is of course a CPU overhead of doing
the work. Whether or not this overhead actually has an influence on query execution
time depends on the circumstances (size and contents of table, nature of queries, etc.).

3.3.2. (B): Quantifying experiments

In this section we will conduct experiments to see whether or not we can benefit from using row
compression on a DB2 database instance. The row compression feature of DB2 is described
briefly in [2]. We conduct the experiments on the same employees table as used in Part 1.

First we have a look at storage requirements and how row compression may be able to save
disk space and memory usage. We issue the following command to get the physical size (in
4KB pages) of the employees table:

> db2pd -db tuning -tcbstat | grep ’ EMPLOYEES’

This tells us that the employees table takes up 11.913 pages, equal to 47.652KB (somewhere
around 46.5MB). We then enable compression using the alter table command, followed by
a forced reorganisation of the table:

> db2 alter table employees compress yes

> db2 reorg table employees
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After enabling compression, the table has now shrunk in size to 7.407 pages, equal to 29.628KB.
We have therefore achieved a storage space saving of about 39%, which is pretty good con-
sidering the contents of the employees table, where not an awful lot of data seems to be
candidate for compression.

So, in terms of storage requirements, the compression feature of DB2 seems to live up to its
promises. We will now try to issue requests to the compressed database in order to measure
the performance when accessing and updating compressed data.

Setup and experiments

We test five different operations on the employees table, all with and without compression
turned on: inserts (100.000 tuples), updates (100.000 tuples), reads with multipoint queries,
reads with range queries, and reads with full table scans. We use the following general setup
and make some slight modifications for the writes.py script to function with the employees

table:

• We run the writes.py script with the following arguments (for updates):
-t1 -r1 -iCS -wupdateN -x1 -n100000 -a2 -a0 -semployeespec.
This way we use the attributes lat and ssnum for the updates.

• We modify the updateN.sql query to:
update employees set lat = ? where ssnum = ?

to match the above writes.py parameters.

• We modify the insertN.sql query to:
insert into employees values (?, ?, ?, ?, ?, ?)

in order to accommodate the extra attributes of the employees table.

• In query_range.sql, we select 10% of the data.

• For all the read queries we measure mean execution time for 200 queries.

• We utilise only one thread for both reads and writes.

Observations and discussion

Results can be seen in Figure 3.2. Initially we observe that when performing inserts or updates,
there is no noticeable difference from using compression or not. So what can one conclude on
these observations? Well, apparently there is no noticeable overhead from the compression
algorithm when inserting new rows or writing data when committing updates – or at least
the compression algorithm overhead combined with the smaller amount of data to be written
to disk matches the time it takes to write the uncompressed data to disk.

When we look at reads, however, we observe some real differences. In both the multipoint,
scan, and range queries, the results when using row compression are about twice as slow as
when not using it. This suggests to us that the decompression algorithm used may not be effi-
cient enough to keep up with regular disk reads. Not surprisingly, in [2] the author only shows
results from storage savings experiments. There are no results on the actual performance of
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Figure 3.2.: Different operations with and without compression.

the algorithms in terms of query response time.

If we were to make recommendations as database tuners based on the results above, we
would recommend using row compression in an environment with large databases, that have
few data requests and many updates. This way a lot of storage space could be saved and
performance would be almost unaffected. However, with the prices on disk storage these days
the incentive isn’t that large. We would not recommend using it in read-intensive environments
where fast access to data is required.

3.4. Part 3: Problem log

Several problems have occurred during the course of solving this assignment:

• Four days before the due date of the assignment, we find out that the query in Part 1
is incorrect. There has been no time to re-analyse the query and redo the experiments,
so basically Part 1 tells us very little on query tuning. Not good...!

• When analysing the query (correct or not) it has been very troublesome finding ways to
improve it, other than primary keys (which ought to have been there from the beginning)
and indexes. There are no nested subqueries, no unnecessary DISTINCTs, no use of
temporary tables or views, etc. So most of the examples in [1] are useless for this query.

Posts on forum
I have posted 21 posts on the forum (3 questions, 9 answers, and 9 lines of code).
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A. Supplementary results

Figure A.1.: AWS times for isolation level CS with sleep of 100 ms (50 runs)

Figure A.2.: AWS times for isolation level RR with sleep of 100 ms (50 runs)
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APPENDIX A. SUPPLEMENTARY RESULTS

Figure A.3.: AWS times for isolation level CS with no sleep

Figure A.4.: AWS times for isolation level CS with CCS turned off (50 runs).
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