
A Fast Taboo Search Algorithm for the
Job Shop Scheduling Problem

Uffe Gram Christensen (uffe@diku.dk)
Anders Bjerg Pedersen (andersbp@diku.dk)

Kim Vejlin (vejlin@diku.dk)

October 21, 2008

Abstract: In this lecture note we initially present the Job Shop Scheduling
Problem (JSSP) in a slightly different context and re-introduce the notions
of critical paths and blocks. We then move on to describing an algorithm for
obtaining near-optimal solutions to JSSP’s, based on a local search strategy
called Taboo Search. Taboo Search makes extensive use of neighbourhoods
and it is of great importance to the algorithm to limit the size of these
neighbourhoods, as this lecture note will focus on. We will ease reading by
extensive use of examples.

1. A Fast Taboo Search Algorithm

1.1. Problem definition

The problem we are looking at is the Job Shop Scheduling Problem or JSSP. In this
problem we have a set of jobs, J . Each job consists of a number of operations. The set
of all operations is called O. We also have a set of machines, M , on which the individual
operations can be processed. The size of each of the three sets will vary with the specific
instance of the problem we are working with, but for the sake of generality we will be
referring to the size of J as n, the size of O as o, and the size of M as m. A summarised
description of the introduced variables is given in Appendix A.1.

Our object is to minimise the makespan of the jobs, that is to minimise the time it
takes to complete all the jobs.

In order to illustrate our points better, we will now introduce an example to support
this notation. In our example we have 3 jobs (n = 3), 2 machines (m = 2), and 12
operations (o = 12). See also Figure 1.

As indicated by the example, the jobs don’t necessarily have the same amount of
operations, but we will number the operations in O so that operations of the same job
are next to each other in the set. We will also order the operations of a single job, so that
the operations that are to be performed earlier are indexed with a lower number than
operations that are to be performed later. If, for instance, the first job has 7 operations
and the second job has 3 operations, then the operations of job 1 would be numbered 1

1

mailto:uffe@diku.dk
mailto:andersbp@diku.dk
mailto:vejlin@diku.dk

Figure 1: A JSSP example

through 7 and the operations of job 2 would be numbered 8 and 9. Operation 1 would
then have to be performed prior to any of the operations 2 through 7, but not necessarily
prior to operations 8 or 9. We will be using the variable oi to indicate the number of
operations in job i and define the variable lj =

∑j
i=1 oi as the number of operations in

jobs 1 through j. In the following table we present the value of these variables in our
example:

Job (i) 1 2 3
oi 7 3 2
li 7 10 12

Each operation has a specific machine it must be completed on and an amount of time
it takes to complete the operation. The operation cannot be interrupted during this time
period (i.e. no pre-empting). For the i’th operation we denote the relevant machine by
µi ∈ M and the time it takes to complete by τi > 0. Below we have a table with the
relevant numbers of τi and µi for our example:

Operation (i) 1 2 3 4 5 6 7 8 9 10 11 12
µi 1 2 1 2 1 2 1 1 2 1 1 2
τi 2 1 2 2 1 1 1 2 2 1 2 2

As can be seen from the table, successive operations of a job are processed on different
machines. We will make this a requirement for all JSSP instance, but it isn’t hard to
transform a JSSP instances that doesn’t have this property into one that does; we simply
interject an artificial operation requiring an infinitesimal amount of time. This artificial
operation is performed on a different machine.

We now define the variable Si as the time we initiate processing of an operation, this
means that the makespan can now be formulated as maxi∈O(Si + τi). The makespan is
the span of time between the initiation of the first operation and the conclusion of the
final operation.

2

1.2. Representing the problem as a graph

The following definitions will come in handy when we try to represent the problem as a
graph, thereby facilitating our analysis.

We define the set Mk = {i ∈ O : µi = k} that is the set of all operations using machine
k. We define the size of this set as mk = |Mk|. We can now talk about the processing
order of operations on a machine using these variables. Ordering the elements of Mk by
some random method, we obtain a permutation which we shall call πk. If we index the
elements of πk, the permutation would look like this (πk(1), . . . , πk(mk)). πk(i) is thus
the i’th element of πk and naturally an element of Mk. Many different permutations
exist and so we let Πk denote the set of all different permutations, πk. The actual
processing order of all operations is thus given by a permutation π = (π1, . . . , πm) where
π ∈ Π = Π1 ×Π2 × · · ·Πm.

For a specific processing order π, we now construct the directed graph G(π) = (O,R∪
E(π)) where each operation constitutes a node and the set of edges is defined by

R =
n⋃

j=1

oj−1⋃
i=1

{(lj−1 + i, lj−1 + i + 1)}

E(π) =
m⋃

k=1

mk−1⋃
i=1

{(πk(i), πk(i + 1))}

The arcs represented by the set R are arcs between operations in a job. Each operation
has an arc to the next operation in the job, thus the last operation of the job has no
such arc. For those who have read [1] these are also known as the conjunctive edges. The
arcs represented by the set E(π) are the arcs between operations on the same machine,
that is, operations belonging to the same Mk. Each operation in Mk has an arc to the
operation succeeding it as defined by the permutation πk. In [1] these are known as the
disjunctive edges.

Returning to our example we select a permutation of operations π which in this case
is also a feasible order of production.

π = (π1, π2)
π1 = (1, 8, 3, 11, 5, 10, 7)
π2 = (2, 4, 9, 12, 6)

This permutation combined with the information about the jobs we have from earlier,
gives us Figure 2, where the solid edges are the conjunctive edges and the dashed lines
are the disjunctive edges.

In this directed graph we now let each node have a weight equal to the processing
time of the node, that is τi, while the edges have a weight of 0. By finding a longest
path to a node, we determine the earliest starting time of the corresponding operation,
when using the selected permutation. This only holds if there are no cycles in the graph.
[3] states that if a feasible production schedule is used, then the graph will contain no
cycles. Since the longest path to a node determines the earliest starting time of the
corresponding operation, the problem of finding the makespan is now reduced to finding
the longest, or critical, path in the graph. Since the graph has no negative weight cycles,

3

?>=<89:;1 //_____

��

?>=<89:;8 //_____

��6
66

66
66

66
66

66
66

6
?>=<89:;3 //____

����
��

��
��

��
��

��
��

GFED@ABC11 //____

��

?>=<89:;5 //____

��

GFED@ABC10 //____ ?>=<89:;7

?>=<89:;2 //_____

::uuuuuuuuuuuuuuuuuuuuuuuuu ?>=<89:;4 //_____

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm ?>=<89:;9 //____

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm GFED@ABC12 //____ ?>=<89:;6

::tttttttttttttttttttttttttt

Figure 2: Graph of the 3-job, 2-machine, 12-operations instance.

this can be done by multiplying all node weights by −1 and finding the shortest path
using Dijkstra’s algorithm.

Such a critical path, u, can be written as the sequence of nodes it visits: (u1, . . . , uw),
ui ∈ O, i ∈ [1, w]. This path can be divided into blocks, where each block is a num-
ber of operations performed in sequence on the same machine. Also, each block has
the maximum length possible, meaning that a new block doesn’t start unless we be-
gin processing on a different machine. More formally we denote a block Bj and define
it as Bj = (uaj , uaj+1, . . . , ubj

) where the indices are growing in the block and the
indices of block j + 1 are greater than those of block j or put more mathematically
1 = a1 ≤ b1 < b1 + 1 = a2 ≤ b2 < b2 + 1 = a3 ≤ · · · ≤ ar ≤ br. The reason for the
weak inequalities as opposed to strict inequalities are from the fact that a block may
have length one resulting in aj = bj . As we mentioned we require all operations in a

block to use the same machine, that is µ(Bj)
def
= µuaj

, j = 1, . . . , r. Also, we require that
the blocks contain all operations in a sequence that are processed on the same machine:
µ(Bj) 6= µ(Bj+1), j = 1, . . . , r − 1. In Figure 3 we show an example of how these blocks
are defined in our example. As can be seen the blocks only extend along the critical path.

Figure 3: An example of blocks on the critical path.

Now you might ask what all this is good for, and that is indeed a very good question.
The blocks will be used in the taboo search, which will be explained in detail later. They
will also play a role in defining the neighbourhoods used in the taboo search.

1.3. Taboo Search in General

In this section we will outline a meta-heuristic approach to finding near-optimal solu-
tions to certain optimisation problems. It will also illustrate the basic concept of this
note: taboo search. Taboo search (TS) is a local search strategy that takes as input some
solution to a given optimisation problem, found by some heuristic method, and goes on
to look for better solutions in the neighbourhood of the given solution. It reaches this new
solution by means of a move that takes the algorithm to a new and hopefully improved

4

solution. This strategy continues until a satisfying near-optimal, or sometimes even op-
timal, solution has been found. Other stopping rules are also applicable. An illustration
of the flow of the algorithm can be seen in Figure 4 below. Let us now delve deeper into
the general algorithm.

Figure 4: Rough sketch of 3 iterations the general TS algorithm. Normal arrows rep-
resent moves, slashed ones represent forbidden moves. Blue circles indicate
neighbourhoods belonging to the shown solutions, marked with a black dot.

Our initial solution leads us to define a function, from now on called a move. A move
transforms one feasible solution into another, for instance by interchanging two arcs used
in a graph in TSP or switching the order of two operations in JSSP. Every move leads
to a new solution that may be better or worse than the original. The subset of applicable
moves (in this context defined as the set of moves leading to another feasible solution)
generates a set of new solutions, which we will refer to as the neighbourhood of the
original solution. TS now tries to find the best possible solution in this new neighbour-
hood by some searching strategy, on which we will take a closer look in section 1.10. The
new-found solution will then serve as the initial solution in the next step of the algorithm.

The above does not seem like an efficient nor solid strategy for obtaining near-optimal
solutions. However, TS uses certain memory techniques to improve search times and
prevent cycling. Firstly, the algorithm only chooses a new solution from the neighbour-
hood that is at least as good as the previous one (if such a corresponding move exists).
Otherwise it uses some strategy to select the ”best of the worst” moves. More on this
later. Whenever a move is selected and thereby leading us to a new solution, the inverse
move (i.e. the move leading back to the solution that we came from) is added to a list
containing ”forbidden” moves. If the list is full, we delete the oldest entry. The length
(maxt) of this taboo list often has substantial influence on the running time of the al-
gorithm. The usage of this type of list is commonly referred to as short-term memory,

5

however implementations using long-term memory may also be useful in a variety of
situations.

We may encounter a situation, in which a forbidden move actually improves the so-
lution value without making a cycle. To accommodate these instances we define an as-
piration function that helps us evaluate the profit gained by making a forbidden move.
Usually, such a move is allowed if it results in a solution value better than all the previ-
ously obtained solutions.

Several rules can determine whether to stop iterating the search or not:

• The search has found a solution that is within a certain given interval of the lower
bound of the objective function value (i.e. we are ”close enough” to the optimal
solution).

• The search has not been able to improve the best solution during some number of
fixed iterations (i.e. it has not improved during maxiter iterations).

• The search has exceeded the amount of time (CPU or real) allocated for solving
the problem.

We shall take a closer look at these criteria in section 1.10.

1.4. Neighbourhoods

Taboo search builds on a number of central elements that need to be defined for the
specific problem. The first of these is the transition or move operation, which modifies
one feasible solution to produce a new solution. We looked at this definition in the above
section.

The second definition needed is a more concrete definition of a neighbourhood, as
also mentioned in the above section. In [3] various neighbourhoods are defined based
on some subset of all possible moves. These neighbourhoods (and an additional neigh-
bourhood) will be described in more detail in sections 1.5 through 1.8. The definition
of a new neighbourhood is the major contribution of [3]. In the article the authors de-
fine a comparatively small neighbourhood and then show that it is probable that this
neighbourhood definition will perform favourably compared to previous neighbourhood
definitions.

1.5. Neighbourhood definition 1

Let V ′′′(π) denote the set of all operation-pair interchanges where both operations are
performed on the same machine. Then the neighbourhood H ′′′(π) is defined as

H ′′′(π) =
{
Q(π, v) : v ∈ V ′′′(π)

}
,

where Q(π, v) is the operating order produced by applying move v to operating order π.
The size of the neighbourhood is quadratic:

|H ′′′(π)| = Θ

(
m∑

k=1

m2
k

)

6

where m is the number of machines and mk is the number of operations on machine
k. This neighbourhood may (and will for non-trivial problem sintances) also contain
infeasible operating orders, and in each iteration all operating orders in H ′′′(π) need to
be generated and checked for feasibility.

Example 1. Revisiting the example with π = (π1, π2), π1 = (1, 8, 3, 11, 5, 10, 7) and
π2 = (2, 4, 9, 12, 6), the graph G(π) can be plotted:

?>=<89:;1 //_____

��

?>=<89:;8 //_____

��6
66

66
66

66
66

66
66

6
?>=<89:;3 //____

����
��

��
��

��
��

��
��

GFED@ABC11 //____

��

?>=<89:;5 //____

��

GFED@ABC10 //____ ?>=<89:;7

?>=<89:;2 //_____

::uuuuuuuuuuuuuuuuuuuuuuuuu ?>=<89:;4 //_____

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm ?>=<89:;9 //____

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm GFED@ABC12 //____ ?>=<89:;6

::tttttttttttttttttttttttttt

Figure 5: G(π)

The neighbourhood H ′′′(π) is then the set of processing orders arrived at by applying
the following moves to π:

(1, 8), (1, 3), (1, 11), (1, 5), (1, 10), (1, 7), (8, 3), (8, 11), . . . , (9, 12), (9, 6), (12, 6)

Some of these moves result in infeasible processing orders, because they violate the intra-
job ordering of operations. One example of a move that generates an infeasible processing
order is the move (1, 3). Interchanging operations 1 and 3 results in operation 3 being
processed before operation 1. This is not compatible with the requirement that operation
1 must be processed before operation 2 which in turn must be processed before operation
3. That Q(π, (1, 3)) is infeasible can be seen by computing the graph G(Q(π, (1, 3))) and
noticing that the cycle 3-8-1-2-3 has been introduced (see Figure 6).

?>=<89:;3 //_____

��6
66

66
66

66
66

66
66

6
?>=<89:;8 //_____

��6
66

66
66

66
66

66
66

6
?>=<89:;1 //____

zzuuuuuuuuuuuuuuuuuuuuuuuuu
GFED@ABC11 //____

��

?>=<89:;5 //____

��

GFED@ABC10 //____ ?>=<89:;7

?>=<89:;2 //_____

OO

?>=<89:;4 //_____

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm ?>=<89:;9 //____

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm GFED@ABC12 //____ ?>=<89:;6

::tttttttttttttttttttttttttt

Figure 6: G(Q(π, (1, 3))) introducing the cycle 3-8-1-2-3.

It is clear that for any feasible operating order, any other feasible operating order can
be reached through a series of job-pair interchanges. The implication is that an optimal
processing order is always reachable from any starting point for a search. This is called
the connectivity property.

7

1.6. Neighbourhood definition 2

Restricting the number of legal moves to only operation-pair interchanges involving ad-
jacent operations, will significantly reduce the size of the neighbourhood while retaining
the connectivity property.

Let V ′′(π) denote the set of all operation-pair interchanges, where the operations are
adjacent in the ordering on the same machine. The neighbourhood H ′′(π) can then be
defined as:

H ′′(π) =
{
Q(π, v) : v ∈ V ′′(π)

}
.

Thus, restricting the number of legal moves results in a neighbourhood of smaller size:

|H ′′(π)| = Θ

(
m∑

k=1

(mk)

)
,

where mk is the number of operations on machine k.
To see that the connectivity property still holds, observe that any operation pair

interchange can be achieved through a series of pair interchanges involving only adjacent
pairs. It also follows that H ′′(π) may contain infeasible processing orders.

Example 2. For our example π = (π1, π2), π1 = (1, 8, 3, 11, 5, 10, 7), and π2 = (2, 4, 9, 12, 6).
The set of moves is:

(1, 8), (8, 3), (3, 11), (11, 5), (5, 10), (10, 7), (2, 4), (4, 9), (9, 12), (12, 6)

As mentioned some moves may violate the intra-job ordering restrictions. An example
is the move (2, 4).

1.7. Neighbourhood definition 3

The set of moves can be further restricted by in addition to the above requirements also
requiring that the operation pairs be on some critical path.

This is the neighbourhood definition used in [2]. The size of this neighbourhood H ′(π)
is ∣∣H ′(π)

∣∣ = O(
c∑

i=1

ri∑
k=1

(|Bk,i|)

where c is the number of critical paths in the graph G(π), ri is the number of blocks on
critical path i and | Bk,i | is the number of operations in block k on critical path i.

It has been shown that this neighbourhood definition retains the connectivity property,
and that H ′(π) contains only feasible processing orders. H ′(π) also contains only feasible
processing orders. Neighbourhood H ′(π) is significantly smaller than H ′′(π) and there
is no need to test processing orders for feasibility. The neighbourhood definition does
however require that all critical paths be found, which is equivalent to solving finding
all shortest paths between a pair of nodes in a graph. This is generally a non-trivial
problem.

Example 3. For our example there exists only a single critical path 1− 8− 3− 4− 9−
12− 6− 7. This results in the set of moves (1, 8), (8, 3), (4, 9), (9, 12), (12, 6).

8

1.8. Neighbourhood definition 4

In [3] the authors restrict the size of the neighbourhood H(π) even further by only
allowing moves on operation-pairs at the boundary of the blocks of a single critical path.
More precisely only the first and last operation-pairs of a block are considered legal
moves. The first and last blocks are treated differently in that for the first block only the
last operation-pair is considered and for the last block of the selected critical path only
the first operation-pair is considered. The reason for treating these two blocks differently
is unclear to us.

This approach results in a neighbourhood size of O(r) where r is the number of blocks
on the critical path, and m is the number of machines.

The authors argue briefly that this neighbourhood is interesting because the set
H ′(π)\H(π) contains only processing orders that are not promising, based on a proof
that

Cmax(α) ≥ Cmax(π) : α ∈ H ′(π)\H(π)

where Cmax(π) is the makespan of processing order π. In addition to the neighbourhood
being very small it is also worth noting that for H(π) only a single critical path needs to
be found (can be done with a modified Dijkstra algorithm), and as with neighbourhood
H ′(π) all processing orders in H(π) are feasible.

Those attributes are attractive since they lead to a fast search algorithm. There is
however a price and it is briefly mentioned in the article that the connectivity property
does not hold for neighbourhood H(π). This shows that non-promising solutions are
sometimes needed to get to more promising solutions, and that in some instances, using
neighbourhood H(π) is guaranteed to make it impossible to locate an optimal solution.

Example 4. Returning to the example yet again, the set of legal moves (using neigh-
bourhood definition H(π)) is: (1, 8), (8, 3), (4, 9), (12, 6). While the reduction in number
of moves is small for this example compared to neighbourhood definition 3, this is not
generally the case. In cases with more than one critical path and where blocks are long
the difference will be significant.

1.9. Taboo Search List and Implementation Details in JSSP

We now return to the more practical issues of implementing a TS algorithm. For our im-
plementation of the TS algorithm we construct and maintain a taboo list T = (T1, . . . , Tmaxt)
of length maxt (decided by the current JSSP problem at hand), where each element of
T consists of a valid move Tj ∈ O×O, j = 1, . . . ,maxt. The list is initially set to contain
only zero-moves, i.e. at first

T := ((0, 0), (0, 0), . . . , (0, 0)︸ ︷︷ ︸
maxt elements

).

We add a move v = (x, y) ∈ O×O by shifting all elements of T to the left and appending
v to the right end of the list. The element at position 1 is removed from T . We denote
the insertion of v in T by T ⊕ v. By implementing T as a circular list, we can perform
this insertion in O(1) time.

9

Whenever a valid move v = (x, y) is performed in TS, we add the forbidden inverse
move v̄ = (y, x) to T , i.e. T := T ⊕ v̄.

Example 5. Assume that at some iteration our taboo list T of length maxt = 6 looks as
follows:

T = ((3, 1), (4, 9), (3, 9), (7, 2), (6, 7), (11, 3)).

Now assume that our TS has found a better solution that requires making the move
v = (4, 5). We then get a new T by doing

T := T ⊕ (v̄ = (5, 4)) = ((4, 9), (3, 9), (7, 2), (6, 7), (11, 3), (5, 4)).

We now have the appropriate data structure and operations in place to begin consid-
ering which moves to choose when selecting a new neighbourhood and hereby choosing
which one to add to our taboo list T .

1.10. Neighbourhood Search

Recall from section 1.8 that in JSSP we denote the current processing order with π, the
associated set of moves by V (π), the neighbourhood belonging to π by H(π), and let C∗

be the best solution value so far achieved (i.e. in JSSP the shortest makespan so far).
We will now divide the possible moves in V (π) into 3 categories:

• Unforbidden (U-moves): these comprise the moves from the set V (π)\T .

• Forbidden but profitable (FP-moves): the forbidden moves in general comprise the
moves from the set V (π) ∩ T . A subset of these may actually yield a shorter
makespan, although they are forbidden. The FP-moves therefore consist of the set

A = {v ∈ V (π) ∩ T | Cmax(Q(π, v)) < C∗} .

• Forbidden and non-profitable (FN-moves): these are then made up of the set
(V (π) ∩ T)\A.

Normally in TS one would always choose a U-move or an FN-move, among these of
course choosing the one that yields the best solution (i.e. the shortest makespan). We
now turn back to defining which strategy to use if no U- or FP-moves are available. The
best strategy for selecting among FN-moves in previous articles has been less important
(selection has been made at random), but in Nowicki and Smutnicki ([3]) the neigh-
bourhoods are a lot smaller and therefore the problem of choosing the best move among
FN-moves becomes more important, as the situation in which only FN-moves are left to
choose from is more often occurring, i.e. the situation in which the set V (π)\T is empty.

In [3] the authors propose a revised strategy of choosing the ”oldest” move in our
taboo list T , as well as making certain modifications to the list while doing so. They
split the situation in two cases:

1. The possible moves V (π) contains only 1 move. This move is then trivially selected.

2. The possible moves V (π) contains more than 1 move. In this case we ”fill” our
taboo list from the right with the element in position maxt (i.e. we perform T :=

10

T ⊕Tmaxt), until V (π)\T 6= ∅. At some point after performing a maximum of maxt
insertions, the set V (π)\T will contain only 1 single move which is then chosen as
the next move for the TS iteration.

Example 6. Recall our taboo list of length maxt = 6 from Example 5:

T = ((3, 1), (4, 9), (3, 9), (7, 2), (6, 7), (11, 3)).

Suppose now that at some iteration we are left with a set of possible moves consisting
only of FN-moves:

V (π) = {(6, 7), (3, 9), (11, 3)}.

We now have to choose one of these moves using the above stated algorithm. We append
the move (11, 3) to T , until we get only one element in V (π)\T :

T = ((4, 9), (3, 9), (7, 2), (6, 7), (11, 3), (11, 3)) V (π)\T = ∅
T = ((3, 9), (7, 2), (6, 7), (11, 3), (11, 3), (11, 3)) V (π)\T = ∅
T = ((7, 2), (6, 7), (11, 3), (11, 3), (11, 3), (11, 3)) V (π)\T = {(3, 9)}

We then choose v = (3, 9) as our next move in the algorithm and add v̄ = (9, 3) to the
taboo list:

T = ((6, 7), (11, 3), (11, 3), (11, 3), (11, 3), (9, 3))

The above discussion can be formalised into a more detailed and implementable Neigh-
bourhood Search Procedure (NSP). The procedure takes as input the current processing
order π, a non-empty set of possible moves V (π), a taboo list T , and the so far shortest
known makespan C∗. In the end it returns the next move to be performed (v′), the new
processing order inferred by the move v′ (π′) and the revised taboo list (T ′).

Algorithm 1 NSP(π, V (π), T, C∗)
1: A = {v ∈ V (π) ∩ T | Cmax(Q(π, v)) < C∗} // Find all FP-moves
2: if ((V (π)\T) ∪A 6= ∅) then
3: // There are U- or FP-moves available. Select the best one:
4: Select v′ ∈ (V (π)\T) ∪A such that

Cmax(Q(π, v′)) = min {Cmax(Q(π, v)) | v ∈ (V (π)\T) ∪A}.
5: else
6: // There are only FN-moves available:
7: if (|V (π)| = 1) then
8: Select v′ ∈ V (π).
9: else

10: while (V (π)\T = ∅) do
11: T ← T ⊕ Tmaxt

12: Select v′ ∈ V (π)\T .
13: π′ ← Q(π, v′)
14: T ′ ← T ⊕ v̄′

15: return (v′, π′, T ′)

11

1.11. The TS Algorithm

Using the NSP algorithm from the above section it is now a fairly easy task to design a
complete algorithm for taboo search in JSSP. The Taboo Search Algorithm (TSA) takes
as input an initial solution (processing order) π∗ and creates an initially empty taboo
list T . The general flow of the algorithm consist in first finding the moves for the initial
solution: V (π∗). We then choose a move using the NSP algorithm previously stated,
which selects move v′ ∈ V (π∗) giving us a new neighbour π := Q(π∗, v′) to use in the
next iteration, as well as an added entry to our taboo list (T := T ⊕ v̄′).

There are some other implementation details that we have omitted here, but a more
thorough implementation is given in the algorithm TSA below. Omitted details include
the number of iterations allowed (maxiter, fixed), the current iteration (t), and the
length of the taboo list (maxt, fixed).

Algorithm 2 TSA(π∗)
1: C∗ ← Cmax(π∗)
2: π ← π∗

3: T ← {}
4: t← 0
5: while (t < maxiter) do
6: // Continue to iterate until reaching maxiter iterations:
7: t← t + 1
8: Find V (π)
9: if (V (π) = ∅) then

10: // Stop. π is optimal.
11: return (π,C∗)
12: else
13: // Use NSP to find the next neighbour and update relevant values:
14: (v′, π′, T)← NSP (π, V (π), T, C∗)
15: if (Cmax(π′) < C∗) then
16: π ← π′

17: C∗ = Cmax(π)
18: t← 0
19: return (π,C∗)

The TSA algorithm is initially usable for taboo searching in JSSP. There are, however,
some considerations that may have a great influence on the performance of the algorithm
in general. Obviously, the values of maxiter and maxt will vary from problem to problem.
In [3] the authors argue that the primal solution C∗ only has a weak influence on the
result of the algorithm. A bad initial solution only leads to a few extra iterations, not
an overall worse result in terms of minimum makespan. The authors also present an
improved algorithm (TSAB) that takes into account a form of long-term memory, helping
the algorithm resume search at previously unvisited neighbourhoods of good solutions
generated so far. The scope of this note, however, does not allow us to go into further
details with this refinement.

12

1.12. A Few Remarks on Computational Results

We shall not delve very deeply into the computational results of the TSA and (more
relevant) the TSAB algorithm. We will, however, mention that in 1996 the algorithm
outperformed most other JSSP algorithms in various parameters (CPU time, closest to
optimal makespan, etc.). The authors also suggested initial values for the parameters
used in the algorithm, which can have an effect on the running time of the algorithm
depending on the problem at hand. Without investigating matters we believe, though,
that the TSAB algorithm must be outdated by today’s standards. After all, a period
of 12 years has passed since the release of the article. However, today the concepts of
the article are still heavily in use as fundamental building blocks of more complex and
refined algorithms for solving JSSP instances.

1.13. Conclusion

We have presented an overview of JSSP in the context that we wish to describe. In doing
so we have established adequate detailed notation as well as re-introducing notions of
blocks and critical paths. Also, previous neighbourhood-defining strategies have been
listed and compared to a more appropriate definition that allows our problem to be solved
more efficiently. In solving our problem we have introduced the taboo search paradigm
and seen how it can be applied to JSSP in conjunction with the revised definition of a
neighbourhood to provide faster solutions.

13

References

[1] P. Brucker, B. Jurisch, B. Sievers: A branch and bound algorithm for the job-shop
scheduling problem, in Discrete Applied Mathematics 49, p107-127 (1994).

[2] P.J.M. van Laarhoven, E.H.L. Arts, J.K. Lenstra: Job Shop Scheduling by Simulated
Annealing, in Operations Research, Vol. 40, No. 1, p113-125 (1992).

[3] E. Nowicki & C. Smutnicki: A Fast Taboo Search Algorithm for the Job Shop Prob-
lem, in Management Science, Vol. 42, No. 6, p797-813 (1996).

A. Appendix

A.1. List of variables

J Set of jobs.
M Set of machines.
O Set of operations.
lj Number of operations in jobs 1 through j.
oi Number of operations in job i.
µi The i’th machine, i ∈M .
τi Processing time of the i’th operation.
Si Starting time of the the i’th operation.
Mk Set of all operations having µi = k
mk = |Mk| Number of operations to be executed on machine k.
πk Some permutation of the elements in Mk.
Πk Set of all permutations of Mk or all possible instances of πk.
R Edges between operations of the same job. Known as conjunctive edges in

[1].
E(π) Edges between operations on the same machine using the permutation π.

Known as disjunctive edges in [1].
u Critical path in the graph G.
Cmax(π) Makespan using processing order π.

14

	A Fast Taboo Search Algorithm
	Problem definition
	Representing the problem as a graph
	Taboo Search in General
	Neighbourhoods
	Neighbourhood definition 1
	Neighbourhood definition 2
	Neighbourhood definition 3
	Neighbourhood definition 4
	Taboo Search List and Implementation Details in JSSP
	Neighbourhood Search
	The TS Algorithm
	A Few Remarks on Computational Results
	Conclusion

	Appendix
	List of variables

