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Abstract: We present a thorough and broad analysis and review of taboo search
in the context of the job-shop scheduling problem. After a quick recap of nota-
tion and complexity we compare different solutions techniques and lay out the
primary components of taboo search and neighbourhood definitions, and analyse
the impact of different solution space factors on running time. Finally we take an
in-depth look at the prominent TSAB and i-TSAB algorithms by Nowicki and
Smutnicki, analysing the reasons for their efficiency and finally outlining possi-
ble future research directions. Throughout the paper we rely heavily on existing
literature, giving the contents a survey-like approach.

Introduction

The job-shop scheduling problem (JSSP) is a notoriously difficult problem in combina-
torial optimisation. Because of its widespread applicability, however, it has spun huge
interest in the research community, from the late 1970’s up until today. Its applications
include scheduling of jobs in factories (most efficient use of various machines, finishing
workloads on time or at the earliest etc.), scheduling employee work hours and many
more.

In this paper we shall take a closer look at the problem itself and go through various
ways of solving it, especially focusing on the metaheuristic approach taboo search. We
examine previous and current solution methods, compare them to each other, point
out relevant properties of the JSSP solution space, and briefly suggest ways for further
research to follow. Taboo search will play a primal role throughout the paper, as it
has proven itself to be extremely efficient in solving JSSP instances compared to other
solution methods.

1 Introduction to JSSP

In this section we shall give a brief definition of JSSP, its representation, and its complex-
ity. Throughout this paper we shall maintain the notation given in [9]. A more thorough
review as well as examples and overview of notation can also be found in [5].
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1.1 Problem definition Analysis of Taboo Search in JSSP

1.1 Problem definition

JSSP is a generalisation of the flow shop problem, in which we are given a set of n jobs
J = {1, . . . , n} and m machines M = {1, . . . ,m} on which the jobs are to be processed.
Each job has a fixed number of operations, taken from a general set of operations O =
{1, . . . , o}. Let lj =

∑j
i=1 oi denote the number of operations in jobs 1 through j. In

JSSP each operation i ∈ O has to be processed on a certain machine µi ∈ M without
interrupting the process. We are, however, allowed to pause the jobs in between its
operations.

Each operation i ∈ O has a processing time of τi > 0 on machine µi. Any given
machine can only process one operation at a time, and the order of operations in a
job cannot be interchanged (i.e. operation i + 1 in a job must be processed completely
after finishing operation i). For simplicity we assume no set-up or transfer costs when
changing processing of a job from one machine to another.

The general goal of the problem is then to find the minimal makespan of the jobs, i.e.
find the processing order that minimises the time needed to process all operations in all
jobs. This is also referred to as JSSP with the ”makespan criterion”.

We can decompose the set of operations O into m subsets, each containing exactly
those operations that are to be processed on machine k ∈M :

O =
⋃

k∈M

Mk, Mk = {i ∈ O | µi = k}, mk = |Mk|.

Denote then the order of the mk operations on machine k as some permutation of the
operations:

πk = (πk(1), . . . , πk(mk)), k ∈M, πk(i) ∈ O.

If we let Πk denote all of these possible permutations of operations on machine k ∈M ,
we see that a complete processing order π will be an element of the product set Π of
permutations on all machines:

π ∈ Π = Π1 ×Π2 × · · · ×Πm.

Representation of the problem can be done most practically by using a directed graph
G(π) = (O,R ∪ E(π)), as first introduced in [11]. Using the notation from [9], the
digraph consists of two types of edges. Edges from the set R (conjunctive edges) represent
processing orders of operations in jobs:

R =
n⋃

j=1

oj−1⋃
i=1

{(lj−1 + i, lj−1 + i+ 1)}

Edges from the set E(π) (disjunctive edges) represent processing orders of operations
on machines:

E(π) =
m⋃

k=1

mk−1⋃
i=1

{(πk(i), πk(i+ 1))}

The nodes of G(π) are the operations from the set O and each node i ∈ O has weight
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τi, whereas the edges all have weight zero.
From this representation we have that any graph G(π) represents a feasible processing

order π only if it contains no cycles, and the corresponding makespan Cmax(π) is equal
to the – not necessarily unique – longest path that can be found in the graph. We shall
refer to a longest path as the critical path of G(π).

Example 1: As a simple example consider a 3-machine, 3-job instance of JSSP with a
total of 9 operations: J = {1, 2, 3}, M = {1, 2, 3}, O = {1, 2. . . . , 9}. Job 1 consists of
operations 1-4-9, job 2 of operations 5-6-8, and job 3 of operations 2-3-7 (to be processed
in that order).

Machine assignments are as follows: µ1 = µ2 = µ5 = 1, µ3 = µ4 = µ6 = 2, µ7 = µ8 =
µ9 = 3. Processing times are: τ1 = τ4 = τ6 = τ7 = 2, τ2 = τ3 = τ5 = τ8 = τ9 = 1.

Below is shown the disjunctive graph representation G(π) = (O,R∪E(π)) of a feasible
solution π to the instance. Notice that the graph is cycle-free.

Figure 1: G(π) belonging to the instance described. Normal arrows represent edges from the
set R, dashed arrows represent edges from the set E(π). A source and sink have been
added to ease presentation. Also, edge weights are equivalent to the weight of the node
from which the edge originates. This eases graphical representation and is equivalent
to using node weights in terms of finding critical paths.

From the representation given above, we have the two edge sets:

R = {(2, 3), (3, 7), (1, 4), (4, 9), (5, 6), (6, 8)}
E(π) = {(2, 1), (1, 5), (3, 4), (4, 6), (7, 9), (9, 8)}

Notice also in Figure 1 that the single critical path consist of the path
s→ 2→ 1→ 4→ 6→ 8→ t of length Cmax(π) = 8.

�

We shall return to this representation when discussing blocks and neighbourhoods
in sections 3.2 and 4. The impatient reader can also have a look in [5], where another
example of this representation is given.
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1.2 Complexity

As mentioned before, JSSP represents one of the hardest problems in combinatorial op-
timisation. In fact, in [6] the authors prove the problem to be NP-complete whenever
m ≥ 2 by reducing it from the 3-partition problem, which is known to be NP-complete.
They even generalise their results to show that NP-completeness of JSSP is independent
of how one measures the ”length” of the problem (either by size of the input or by sum
of processing times). Empirical results have confirmed this observation: a fairly simple
10x10 instance (10 jobs, 10 machines) by Fisher and Thompson dating back to 1963 has
since shown itself to be notoriously difficult and withstood all attempts to be solved to
optimality for 27 years!

There are, however, a few specific instances of JSSP that are in fact solvable in sub-
exponential time: ([3], p3)

• Scheduling two jobs by a graphical method.1

• The flow-shop problem with m = 2 and the additional requirement that every job
has the same sequence of machines on which to be processed.

• JSSP with m = 2 and each job consists of at most two operations.

• JSSP with m = 2 and unit processing times.

• JSSP with m = 2 and a fixed number of jobs.

Changing even a slight parameter in the above cases causes the problem to become
NP-hard. As soon as the problem grows beyond two machines or outside of the above –
as happens in most cases in real life scheduling – the problem can no longer be solved
in polynomial time, and therefore it is of much interest in the community to find more
efficient solution techniques to JSSP than the ones currently available.

2 Conventional solution techniques

In this section we present a selection of conventional techniques for solving the job-shop
problem. We consider both exact methods and heuristics, although the main focus will
lie on the latter, where we shall also find taboo search. We base our review primarily on
[3] for descriptions and [1] for results and comparisons.

2.1 Branch and bound

Branch and bound is a well-known exact solution method applied to a variety of different
optimisation problems. Its main focus lies in being able to enumerate the entire feasible
solution space of a problem but quickly cutting away uninteresting sub-solution spaces
not yielding better results than previously found solutions. It identifies different solution
spaces by recognising certain attributes common to the feasible solutions in that space.

1As can be seen in [4], the author reduces the problem to an unrestricted shortest-path problem in
the plane with rectangular obstacles. After constructing a special network, it is possible to solve the
instance in O(n log n) time. Here the n obstacles are representations of the operations on machines,
and the dimensions of the obstacles represent their processing times.
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In the case of the Travelling Salesman Problem, for instance, different solution spaces
may be characterised by which edges are allowed in the closed Hamiltonian path in the
graph corresponding to the problem instance.

Branch and bound uses estimations in the form of lower and upper bounds on the
problem to be able to cut away certain solution spaces. The better bounds, the faster
a solution can be found. An initial heuristic is also used to infer an upper bound (in
minimisation problems) that can be compared with a lower bound during execution: if
the lower bound of a certain solution space exceeds the initial upper bound found by the
heuristic, the solution space is of no interest and can be cut away. In the course of the
branch and bound algorithm the best bounds found are updated.

The nuts and bolts of branch and bound lie in determining two things: good lower
bounds with which the algorithm can cut away branches, and a good and efficient branch-
ing strategy; i.e. a way to characterise the different solution spaces from each other.
Firstly looking at lower bounds, a large number of proposals exist for JSSP. The dif-
ferent lower bounds are often specialised for different types of JSSP instances, though,
and going through them here would be outside the scope of this paper. We mention,
however, that attempts to find good lower bounds can be based on various methods,
including Lagrangian relaxation, optimal solutions to simpler subproblems (e.g. with
fewer machines) and the classic head-tail bounds (see [3], p7f for more details).

In determining a good branching strategy there are again a vast amount of suggestions
that have appeared over the course of the last 30 or 40 years. We shall not go deep into
these different strategies but only mention that there also exists a branching strategy
which is very similar to the one imposed by Nowicki and Smutnicki’s taboo search
procedure discussed later on. This strategy is based on critical paths and the blocks of
which this path consists. When at some sub-problem we need to branch, we do so by
moving an operation from a block to either the beginning or the end of that same block.

2.2 Priority Dispatching Rules

Priority dispatching rules, or also known simply as priority rules, are one of the simplest
and most frequently used heuristics for JSSP. This heuristic generates feasible solutions
by continuously selecting unscheduled operations one at a time based on certain rules.
These rules vary from problem to problem and can often be adjusted to match certain
instances better than others. Possible rules include operations with shortest remaining
job processing times, the first one waiting in the queue and others. An example of such
rules can be found in [3], p12.

The algorithm maintains a list Q(t) of operations yet to be scheduled as well as a
”conflict set” containing for instance the operations competing for the same machine
at the same time and uses priority rules to select the next operation to be scheduled.
The operation i to be scheduled is chosen from Q(t) so that it does not conflict with
operation j, which is the operation chosen with regards to the priority rule in mention.

2.3 Shifting Bottleneck Procedures

A shifting bottleneck procedure repeatedly schedules operations on individual machines,
not immediately taking notice of the overall schedule for all machines. The remaining
unscheduled machine with the highest makespan (the bottleneck machine) is scheduled

5



2.4 Local Search Analysis of Taboo Search in JSSP

first. This type of heuristic again makes use of the head and tail values for each oper-
ation in order to calculate the makespan of a certain machine. After each machine has
been scheduled, the procedure applies a local optimisation procedure to re-optimise the
machines that have already been scheduled, before continuing with the next bottleneck
machine. The great advantage of this heuristic is the simplicity and speed of its sub-
routines: solving a one-machine problem can be done efficiently by a branch and bound
algorithm.

The efficiency of shifting bottleneck procedures relies heavily on the order in which
the individual machines are scheduled. By defining bottleneck as the machine with the
longest makespan, one settles for an order of machines not necessarily representing the fi-
nal optimal schedule. Another slightly modified approach involves using a form of branch
and bound to enumerate and schedule the different inclusions of new machines until a
certain depth of the search tree. After this depth has been reached, several machines
beside the bottleneck one are included in every branch, hereby making the number of
branches substantially smaller. The reason for this extended rule is of course that enu-
meration of all possible inclusions of machines is computationally infeasible.

2.4 Local Search

Local search procedures is a generic term for such methods as hill-climbing, simulated
annealing, taboo search and others. They have in common that instead of constructing
a best solution from scratch they start with an initial solution (found by some simple
heuristic) and move around the adjacent search space looking for better solutions. The
simplest example is the classic hill-climbing procedure, where we only continue on to
near-by solutions that yield a better makespan. Disadvantages of this approach is that
we do not have any means of emerging from a local optimum, as well as missing out
on valuable information about the solution space explored so far that could be used
for further improvements later on. Iterated hill-climbing beginning from different initial
solutions often yields better results.

The advantage of local search procedures in general is that they incorporate some
form of problem-specific knowledge that helps guide the procedure in the right direc-
tion. Problem-specific knowledge is very likely to be in the form of the definition of a
neighbourhood ; a solution x gives rise to a neighbourhood N(x) comprising of solutions
”close” to x. The definition of ”close” is made using knowledge of the problem. Whenever
moving from one solution x to another y, the move is made within the neighbourhood
N(x), meaning y ∈ N(x). Various ways exist to how to choose the next neighbouring
solution y: choosing the one that yields the best makespan, the one that yields the least
deteriorating makespan or chosen at random, just to name a few.

In simulated annealing, for instance, a neighbour is chosen non-deterministically on the
basis of probability. A neighbour is often chosen randomly and if the neighbour does not
yield an improved makespan, it is accepted with a certain probability. Otherwise another
neighbour is selected and tested again. This implies that in each step of the procedure
we do not necessarily improve our makespan. We are, however, given an opportunity to
escape from local optima, and the acceptance rate should be set so that it gets harder
and harder to make this escape.

Taboo search is another of these local search strategies that incorporates yet another
means of problem-specific knowledge: long- or short-term memory. Taboo search, like
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simulated annealing, offers ways to escape from local optima, but deterministically: nor-
mally there is no element of probability involved in choosing the least deteriorating move
to be performed next. The procedure prevents falling back into a local optimum by intro-
ducing a taboo list. This list contains the last maxt moves performed, actively forbidding
the repetition of these moves for the next maxt iterations. This enables taboo search to
wander away from a local optimum.

The type of list mentioned here is short-term memory, but as we shall see in section
4 long-term memory can also aid in guiding and restarting taboo search from previous
good solutions.

2.5 Performance of Local Search Heuristics

The question arises: why are we at all interested in looking at methods that do not
guarantee an optimal solution to JSSP when we indeed have the possibility to use exact
methods, like branch and bound? Obviously, using exact methods on NP-hard prob-
lems gives us the answer within the definition of NP-hard: they cannot be solved in
sub-exponential time. Although certain small and specific instances can be solved poly-
nomially (as we saw in section 1.2), in general there are no computationally tractable
methods for solving random JSSP instances to optimality. Therefore it is interesting to
have a look at heuristics and how they perform compared to each other. In [1] the authors
present a short but thorough comparison of different heuristics in JSSP: hill-climbing
(also known as iterative improvement) with multiple starting points, simulated anneal-
ing, threshold accepting (accepting new solutions if their improvement to the makespan
lies within a certain threshold) and genetic algorithms. They also use two different for-
mulations of neighbourhoods, N1 and N2, which we shall return to shortly. Finally they
compare these results to an implementation of taboo search.

Each type of heuristic is given the same amount of time to solve various instances
of JSSP, allowing for a more ”fair” comparison. Parameters are therefore adjusted to
harmonise running times. Their results show that the basic hill-climbing heuristic is
outperformed by most other heuristics, and that simulated annealing in general per-
forms better than genetic algorithms and threshold accepting. Subsequently the authors
allow the algorithms to take the time needed to finish. This last experiment confirms
the strength of simulated annealing. But what about taboo search? Interestingly, this
heuristic generally outperforms all other tested heuristics in many instances on both
running time and quality of solution obtained.

Although the article is of some age (1994) it is interesting to see how an early im-
plementation of taboo search has such great potential. In the next sections we shall go
deeper into the nuts and bolts of taboo search and have a look at why neighbourhood
definitions play such an important role.

3 Taboo Search

In this section we shall have a look at the core elements of taboo search: stopping criteria,
the taboo list, aspiration functions and – most importantly – neighbourhoods.

Descriptions of the general method as well as most definitions will be short and based
on [5], [7] and [9]; a more thorough explanation as well as examples can be found in [5].
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Finally we have a look at the computational complexity of using taboo search to solve
JSSP instances.

3.1 Definitions and Overview

As before mentioned, taboo search begins with an initial solution, found by some simple
heuristic or insertion method. The algorithm then searches the neighbourhood of this
solution (consisting of ”similar” or ”nearby” feasible solutions) for a better one. If one is
found, the search then accepts this as the new initial solution and continues from here.
Going from one feasible solution to another is called a move. In JSSP a move v will
consist of switching two operations oi, oj from the set O in the current production plan
π, e.g. v = (oi, oj), i, j ∈ O. We denote the new production plan obtained by applying
move v to π by Q(π, v). So far this procedure is basically the same as applying simple
hill-climbing. Taboo search also maintains a taboo list T ⊆ O × O of length maxt con-
sisting of the previous maxt moves made so far. In fact, instead of the actual move being
stored, we store the reverse move v−1: v = (oi, oj) ⇒ v−1 = (oj , oi). The algorithm is
forbidden to make any of the moves currently in the taboo list.

The taboo list is a form of short-term memory. Later we shall see how intermediate
memory can be used to intensify search in ”good” regions previously visited. Long-term
memory can also be used to diversify the search into ”interesting” regions that do not
necessarily promise better solutions. In JSSP one can, for instance, keep a count on the
edges that tells the algorithm how many times the edge has been used in a solution
found. Long-term memory can then diversify the search by choosing solutions that do
not include one or more of those edges with the largest count. Further diversification of
the search can also be made by introducing probabilistic parameters in various stages of
the search: accepting taboo moves with a certain probability (the aspiration function),
making certain moves seem more attractive (redefinition of neighbourhood), and decid-
ing whether to make used moves taboo or not (redefinition of taboo list properties). For
more in-depth studies we refer to section 9 in [7]. The overall process of taboo search
can be illustrated as in Figure 2 below.

Now we can also see the close relation to branch and bound algorithms: the taboo
list in JSSP usually contains certain operation pairs (moves) used in previous iterations,
but the list may also contain moves or operations with certain properties. Depending on
the manner in which a move is defined, these may also consist of linear inequalities or
logical relations. This is very much like the way a branch and bound algorithm would
separate the solution space into smaller ones.

In case no better solution is found in the current neighbourhood, we have reached a
local optimum and we choose ”the best of the worst”. How this is done varies from imple-
mentation to implementation, but it allows taboo search to progressively wander away
from local optima instead of just cycling around them. Also, taboo search introduces an
aspiration function that allows for certain taboo moves to be performed if for instance
they yield a better makespan. In other words, the aspiration function defines exceptions
for bringing in moves that were actually forbidden, but still retaining the ability to avoid
cycling.
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Figure 2: Rough sketch of 3 iterations of a TS algorithm. Normal arrows represent moves, slashed
ones represent forbidden moves. Large blue circles indicate neighbourhoods belonging
to the shown solutions.

3.2 Neighbourhood Definitions

Recall from section 1.1 that the makespan Cmax(π) associated with a given production
plan π is equal to a (not necessarily unique) longest (critical) path in the corresponding
graph G(π). When discussing neighbourhood definitions it is necessary to further refine
the division of a critical path, namely into blocks. A critical path u of length w can
naturally be decomposed into the operations of which it consists:

u = (u1, u2, . . . , uw), ui ∈ O.

We shall now have a look at another important decomposition of a critical path, namely
the division into blocks. A block is informally defined as the longest set of uninterrupted
operations from a critical path on the same machine. The critical path then consists of
one or more blocks, depending on the schedule at hand. Formally, for a critical path u
containing r blocks we define a block Bj as a sequence of operations:

Bj = (uaj , uaj+1, . . . , ubj
), j = 1, . . . , r.

To ensure that the blocks actually make up the critical path when put together, we make
sure that the indices are growing throughout the individual blocks as well as between
the blocks:

1 = a1 ≤ b1 < b1 + 1 = a2 ≤ b2 · · · ≤ ar ≤ br = w.

We require that operations in a block are processed on the same machine:

µ(uaj ) = µ(uaj+1) = · · · = µ(ubj
), j = 1, . . . , r
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and that two consecutive blocks are processed on different machines:

µ(aj) 6= µ(aj+1), j = 1, . . . , r − 1.

Example 2: Returning to the instance from Example 1, we can construct a Gantt chart
to visualise the processing order as well as the contained blocks:

Figure 3: Gantt chart of the processing order π from Figure 1.

From the Gantt chart we can see that the critical path u = (2, 1, 4, 6, 8) consists of
three blocks: B1 = (2, 1), B2 = (4, 6) and B3 = (8). We note that this processing order
is not optimal. The talented reader should be able to find a makespan of 7.

�

We shall now have a look at various ways of defining the neighbourhoods that are
of such great importance in local search algorithms; some of these incorporate blocks.
Neighbourhoods are often referred to as operators, as they are commonly defined as
”what to do in order to reach a new solution”. A few key concepts of neighbourhoods in
general can be outlined:

Size The size of a neighbourhood is obviously of great importance: the larger the neigh-
bourhood, the longer it takes for an algorithm to search it for the ”best” solution.

Convergence We define convergence of a neighbourhood in terms of how well certain
definitions of neighbourhoods help the algorithm converge towards local or global
optima. In this paper we do not discuss this property.

Connectivity The connectivity property states that it is possible to get from any feasible
solution to an optimal one using only those operations defined in the neighbour-
hood definition. In other words: from a given starting point one can always find a
series of neighbourhood operations leading to an optimal solution. In the case of
simulated annealing procedures, the connectivity property is required in order to
ensure asymptotic convergence. Most of the neighbourhoods under investigation
have this property. We shall see, though, that the most powerful one does actually
not.

Neighbourhoods (or operators) are commonly named Nx with x being a positive
integer. For examples on the uses of different neighbourhoods, we refer to [5]. Definitions,
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sizes and remarks are based on [3] and [9]. We shall put our main focus on neighbourhoods
N1 and N5. N5 is a subset of N1 and therefore inherits some interesting properties. Also,
little attention has been given to N2, N3 and N4 in the literature.

We begin with the simplest of the neighbourhoods: the N1 neighbourhood, originally
from [8].

N1: On a critical path in the current solution, reverse a disjunctive arc, i.e. an arc
between two adjacent operations on the same machine.

In the notation of [9], if we denote by V1(π) all the solutions obtained by applying the
N1 operator to a solution π, let c be the number of critical paths, let ri be the number of
blocks on critical path i, and let Bk,i be block k on critical path i, the N1 neighbourhood
can formally be written as

N1(π) = {Q(π, v) : v ∈ V1(π)}

and the size of N1(π) is then:

|N1(π)| = O

(
c∑

i=1

ri∑
k=1

|Bk,i|

)
.

If we assume that π has only a single critical path of length r, the size of the neighbour-
hood is naturally reduced:

|N1(π)| = O

(
r∑

k=1

|Bk − 1|

)

In [8] the authors prove that this neighbourhood is connected and contains only feasible
solutions (assuming of course that one starts from a such).

N2: On a critical path in the current solution, consider the disjunctive arc (i, j) on
machine m. Define p(i) as the predecessor of i on machine m and s(j) as the
successor of j on machine m. Furthermore, restrict attention to arcs (i, j) at the
beginning or end of a block, i.e. at least one of the arcs (p(i), i) or (j, s(j)) is not on
the critical path. Reverse (i, j). Let h be the direct predecessor of i in i’s job and
let k be the direct successor of j in j’s job. Reverse the conjunctive arcs (p(h), h)
and (k, s(k)), if they yield an improvement in the makespan.

N3: On a critical path in the current solution, consider the disjunctive arc (i, j). With
the definitions from N2, consider all permutations of the following operations, in
which (i, j) is reversed: {p(i), i, j} and {i, j, s(j)}.

N4: On a critical path in the current solution, consider an operation i in some block.
Move i to the beginning or end of its block.

The neighbourhoods N2, N3 and N4 all have the connectivity property. They are,
however, not quite as interesting as the N5 neighbourhood:
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N5: On a specific critical path in the current solution, consider swapping only those
two successive operations that lie at the beginning or end of a block. For the first
block consider only the two last operations, and for the last block consider only
the two first operations.

The size of N5 is trivially |N5(π)| = O(r), i.e. the number of blocks on the critical
path chosen. More precisely:

|N5(π)| = min {1, |B1| − 1}+
r−1∑
k=2

min {2, |Bk| − 1}+ min {1, |Br| − 1}

Contrary to other neighbourhood definitions, this one chooses arbitrarily only one critical
path and does not take care of any others. This makes it computationally easier to find
the critical path at hand instead of having to find them all. Also, the authors in [9] argue
that this neighbourhood consists only of feasible solutions, as it is merely a subset of the
N1 neighbourhood:

N1(π) ⊃ N5(π).

They even prove that any processing order from N1 that is not found in N5 cannot yield
a better makespan:

Theorem 1: For any processing order w ∈ N1(π) \ N5(π) we have that Cmax(w) ≥
Cmax(π).

The proof is rather long and tedious and can be seen in [9], Appendix A. Note, however,
that this neighbourhood does not have the connectivity property and is therefore not a
good choice for simulated annealing procedures. Finally, the authors give a clear stopping
criteria for the taboo search algorithm:

Theorem 2: If V5(π) = ∅, then π is optimal.

Proof. Recall from the beginning of this section the property of a block on a critical
path u = (u1, . . . , uw) of length w consisting of r blocks:

1 = a1 ≤ b1 < b1 + 1 = a2 ≤ b2 · · · ≤ ar ≤ br = w.

From the definition of N5(π) we have two possible cases in which the neighbourhood
can be empty: all blocks have length 1, or there is only one block (r = 1). We have a
look at the two cases separately:

1. We have that aj = bj , j = 1, . . . , r. Therefore all edges on the critical path are from
the set R, meaning that all operations in each block are from the same job k ∈ J .
Therefore the size of the critical path is equal to the size of job k (w = ok), and the
critical path itself consist of the operations in job k (u = (lk−1 + 1, . . . , lk−1 + ok)).
Also, the length of this critical path is equal to the total processing time of job k:
Cmax(π) =

∑lk−1+ok

i=lk−1+1 τi.

2. In the case with only one block B1, we have that all operations on the critical
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path are processed on the same machine. Denote this machine q = µ(a1). The set
Mq of operations processed on machine q therefore equals the operations on the
critical path: Mq = {u1, . . . , uw}, and the makespan equals the machine bound:
Cmax(π) =

∑
i∈Mq

τi.

The N5 neighbourhood is one of the core foundations of the algorithm of Nowicki and
Smutnicki. We shall later see that this neighbourhood has brought great results in their
taboo search procedure.

3.3 Complexity of Taboo Search in JSSP

It seems interesting in this context to investigate exactly when taboo search is effective
and when not. As we have seen in the previous section, a number of different neigh-
bourhoods have been proposed for use in local search algorithms with varying results,
and research is often focused on inventing new algorithms that decrease running times
on certain comparable instances of JSSP. These instances are often referred to as being
”exceptionally hard”, but what actually makes an instance ”hard” is a bit more blurry.
Not much focus has been put on investigating these questions, however [13] brings some
new approaches to the definition of ”hard” instances.

Similar experiments have been made for the SAT (satisfiability) problem, but in [13]
the authors – very conveniently – focus on taboo search in JSSP. They investigate what
aspects of the solution space influence the actual running time of an implementation of
taboo search and to what extent. The implementation used is by Taillard and can be
found in [12]. The reasons for using this implementation are its simplicity due to using
the N1 neighbourhood and in addition it being fairly effective on a variety of instances.
Also, using Taillard’s implementation with the connectivity property of the N1 neigh-
bourhood guarantees us that the algorithm is, at least in theory, capable of locating
optimal solutions to all instances when given enough execution time.

In order to investigate different search space properties, we need a function D to
compute the ”distance” between two solutions π1 and π2. The authors present the most
widely used, neighbourhood-independent one: let π be some solution and let i, j ∈ J
and k ∈M . We define the Boolean-valued operator preceedsijk(π) to be true, whenever
job i precedes job j on machine k in solution π. We then define the distance between
solutions π1 and π2 as ([13], p9):

D(π1, π2) =
m∑

i=1

n−1∑
j=1

n∑
k=j+1

preceedsijk(π1) XOR preceedsijk(π2).

This function is normalised to get more smooth results between 0 and 1, independent of
instance sizes:

0 ≤ D(π1, π2) =
2D(π1, π2)
mn(n− 1)

≤ 1.

Different search space properties are then considered:

• |optsols|: the number of optimal solutions to the instance at hand.
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• |backbone|: the size of the backbone in the instance at hand. The backbone is
informally defined as features shared by all optimal solutions. In the disjunctive
graph representation, this would correspond to comparing all optimal solutions and
identifying those edges that are represented in all of these solutions. |backbone| is
then the number of these.

• loptdist: the average distance between locally optimal solutions in the instance
at hand. For two locally optimal solutions π1 and π2 this is formally defined as
D(π1, π2).

• dlopt−opt: the mean distance between local and global optimal solutions, again using
D as the distance function.

Results are empirical: all experiments are conducted a large number of times on ran-
domly generated small (6x4 and 6x6) instances of JSSP. We shall not delve deep into
the statistical analyses of the article but merely discuss the results.

The authors test static cost models based on each of the four properties listed above.
In other words, they generate 1000 instances of each of the groups and test 5000 runs
on these instances to see if the property has a direct influence on the median processing
time (costmed) of the instances. The reason for doing this is the fact that Taillard’s
implementation has a certain amount of chance in it when deciding ties. Also, they
investigate the magnitude of this influence. This way of investigating cost naturally
requires a great knowledge of the instances at hand to find the given properties. Therefore
the authors only consider small instances, as the number of local and global optimal
solutions explodes when considering larger instances.

• |optsols|: when developing a static cost model based on the number of optimal
solutions, the authors find this model to be fairly inaccurate. However accuracy
is expected to increase as n/m → ∞ (more rectangular instances). By intuition,
though, one should think that a local search algorithm would spend more execution
time when the number of optimal solutions is small. Given these results, one can not
accurately say that the number of optimal solutions has any significant influence
on the running time of a taboo search implementation.

• |backbone|: interestingly, the results of the static cost model based on backbone size
are almost completely similar to those based on the number of optimal solutions.
These two features can therefore be seen as equally unimportant in predicting
running time.

• loptdist: this model again shows itself to be fairly inaccurate. The authors do not
spend much time on it, merely stating that the two previous models are at least
as accurate as lopdist.

• dlopt−opt: the static cost model based on dlopt−opt, on the other hand, shows a strong
influence on the median running cost. The authors observe a much higher accuracy
than those of the previous models considered, for both 6x4 and 6x6 instances. The
model, however, becomes much more inaccurate when costmed (and consequently
dlopt−opt) increases. The authors conclude:
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”[...] the static cost model based on dlopt−opt accounts for a substantial
proportion of the variance in the cost required by TSTaillard to locate
optimal solutions to ’typical’ general JSPs.” ([13], p19)

As a final experiment the authors test the dlopt−opt cost model with the addition of one
or more of the other three parameters. This, however, does not improve on the model.

Although these experiments are empirical and the implementation used is fairly old
and simple, their results give a good indication of what factors play an important role
in determining the ”hard” instances of JSSP. Clearly, the mean distance between locally
optimal and optimal solutions has some influence, whereas other tested parameters have
shown to be uninteresting. In section 5 we shortly discuss how this knowledge can be
utilised in future research.

4 Analysis of Two TS Algorithms

We are now ready to have a look at two state-of-the-art taboo search algorithms invented
by Nowicki and Smutnicki. They are named TSAB and i-TSAB (”Taboo Search Algo-
rithm with Back-Track Jumping” and ”Iterated Taboo Search...”) and first appeared
in 1996 (see [9]) and 2001 (see [10]) respectively. i-TSAB builds on the foundations of
TSAB and in this section we shall have a look at both algorithms – but with main focus
on i-TSAB – and see why they are so effective. More detailed reviews of TSAB, including
implementation notes and pseudocode, can be found in [5].

4.1 Short Review of TSAB and i-TSAB

TSAB is a fairly simple implementation of a taboo search algorithm. It uses the dis-
junctive graph representation and maintains a taboo list T of size maxt. Also, the N5
neighbourhood is used for the first time in a local search algorithm. The authors initially
present the algorithm TSA, which is a simpler version of TSAB. In TSA, firstly an initial
solution is generated using the insertion technique from [15]: latin squares are used to
iteratively generate a feasible schedule by inserting operations one at a time. We shall
not put further attention to this method, as the authors in [9] experimentally verify that
the quality of the initial solution does not have a substantial influence on the running
time of their algorithm. Any heuristic for finding feasible solutions can be used at this
stage.

From the initial solution found, TSA searches the N5 neighbourhood for the best
improving solution, uses this as the next starting point and appends the inverse move to
the taboo list. If there are no unforbidden improving moves, the algorithm searches the
taboo list for a forbidden move that yields a lower makespan. If one is found, this move
is applied. This is the aspiration criteria in TSA. If no improving solution can be found,
TSA selects the ”best of the worst” from the taboo list in the following way: re-append
the last element of T to T just as many times as required for V5(π) \T to be non-empty,
e.g. the ”oldest” move is ”pushed out” of T , losing its taboo status.

TSA continues until it has either found an optimal solution (for instance by Theorem
2), has found a solution ”close enough” to the optimal one, or has exceeded some limit
on running time or iterations without improvement.
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TSAB additionally introduces long-term memory: it maintains a list L of the previous
maxl best solutions found. The entries of the list contain the production plan, the as-
sociated taboo list, and the move performed directly after. When the run of TSA from
the initial solution has finished, it restarts from the first entry in L and ”reloads” the
situation, continuing with a different move than before, until L is empty. Also, TSAB
has long cycle detection that aborts a certain search path, if the algorithm keeps circling
around some part of the solution space. It merely keeps track of makespan values during
the course of some number of iterations.

i-TSAB is a more advanced and refined version of TSAB that still, though, has TSAB
as a core sub-routine. First i-TSAB generates a pool E of initial solutions. The first
solution e1 is generated by running TSAB on the heuristic initial solution e0 generated
by the insertion technique from [15]. The remaining solutions in the pool are generated by
applying a so-called path relinking procedure between two previous solutions, as described
in [10]. This approach resembles the line of thought used in genetic algorithms: combining
parts of critical paths taken from different initial solutions.

The approach of the next part of i-TSAB relies on the firm belief that a ”big valley”
phenomenon exists in the JSSP solution space: the distances between good local optimal
solutions and the globally optimal ones are positively correlated with the makespan
values of these solutions. In other words, the best solutions available are ”close” to each
other. On the basis of this belief, i-TSAB enters its ”proper work” phase. In this phase
the pool of solutions generated above is explored using TSAB in the following way: the
solution from the pool with the best (lowest) makespan e∗ is found. Additionally, the
solution ex that is furthest away – in terms of the number of moves required to transform
it into e∗ – is also found. Using another path relinking procedure, a solution φ ”halfway
between” e∗ and ex is found. Then TSAB is run from φ to find a new solution ec which
unconditionally replaces ex in E: E = (E \ {ex}) ∪ {ec}. This procedure continues until
the distance between e∗ and ex is below some specified bound. The procedure is outlined
in Figure 4.

Figure 4: Rough sketch of the ”proper work” phase of i-TSAB. Shown is the pool E of initial
solutions. e∗ = e3 has the lowest makespan in the pool, and ex = e0 is furthest away
from e3, with solution φ ”halfway between” them. TSAB is then applied to φ resulting
in a new solution ec that unconditionally replaces e0.

So basically i-TSAB works by generating a pool of good solutions and using the big
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valley conjecture to close in on the good solutions that are supposed to be close to the
ones in the pool.

4.2 Empirical Analysis of i-TSAB

As can be seen in section 4 in [9], the TSAB algorithm, when it first appeared in 1993,
significantly outperformed three of the other best-known approximation algorithms at
the time by a large margin. Not only did it find lower makespans in many cases, it also
drastically reduced the computational effort needed to achieve these results. The latter
can specifically be seen in Table 2 in [9].
i-TSAB further improved on makespans and execution time in 2003 ([10]). They sum-

marise their results by stating that out of 112 previously unsolved instances they manage
to find 91 better upper bounds.

But what actually makes i-TSAB work so well compared to other approximation
algorithms? In [14] the authors conduct a thorough study of the i-TSAB algorithm
to reveal what components of the algorithm make it perform so well. They set up a
framework to test basic metaheuristics in comparison with taboo search: a refined version
of iterated local search based on the N5 operator incorporating cycle detection, and a
Monte Carlo-based algorithm much like simulated annealing but with fixed temperature,
again based on the N5 operator. The taboo search algorithm to be compared with is a
stripped-down version of i-TSAB, lacking long-term memory and the more complex pool
of initial solutions. In general, the stripped-down version resembles the TSA procedure
in most ways.

Results are surprising: in a general environment where N5 is used throughout the line-
up of metaheuristics, no specific advantage can be seen for taboo search in general. The
two other metaheuristics obtain equally good results when using the N5 operator. Still,
though, i-TSAB outperforms them all by a large margin. The conclusion then is that
taboo search by itself cannot explain the advantages of the i-TSAB algorithm. However,
the authors are surprised to see such strong results from relatively simple metaheuristics
employing the N5 operator.

Next the authors ”augment” the metaheuristics by adding long-term memory, one of
the classical core components of general taboo search. This step significantly improves
almost all of the algorithms considered, yet they are still not quite as good as i-TSAB.
This also adds more belief to the hypothesis that taboo search in itself is not necessarily
the best metaheuristic for the JSSP.

Finally the authors adjust the way and frequency with which the algorithms perform
intensification and diversification. Remember that in i-TSAB intensification is performed
by applying TSAB to the solution φ located between e∗ and ex from the pool E. Di-
versification is in the form of looking at two new solutions in the pool. The authors
have a slightly different take on intensification and diversification in their augmented
algorithms (see [14], section 5), as this allows them to control the amount of each and
monitor the impact on different metaheuristics.

In the above experiment on adding long-term memory, the authors allowed the algo-
rithms an equal amount of intensification and diversification. In this section they adjust
these amounts to investigate whether this has an effect on the efficiency of the algorithms.
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They find that focusing solely on one of the methods generally yields worse solutions
than applying a mixture of the two. Also, based on their empirical observations they
hypothesise a ”sweet spot” when using a straightforward 50/50 split between intensifi-
cation and diversification.

Summing up the above observations, the authors conclude that

”the core metaheuristic, and in particular tabu search, is not integral to the
performance of i-TSAB. Rather, i-TSAB achieves its state-of-the-art perfor-
mance levels through the use of both the N5 move operator and a balanced
combination of intensification and diversification.” ([14], p25)

5 Further Improvements and Unexplored Terrain

Having now gone through the nuts and bolts of local search heuristics, taboo search,
state-of-the-art algorithms, complexity and empirical results, we now turn our focus to
a short discussion of where research might go in the near future.

Actually, many attempts have already been made to develop enhanced methods for the
replacement of i-TSAB. For instance, in [16] the authors present a new neighbourhood
structure N6 which they apply to fairly simple taboo search. Also, they use simulated
annealing instead of the insertion heuristic of [15] to generate a starting feasible solution.
They actually manage to improve on the results of i-TSAB on various instances, however
they conjecture that i-TSAB is still unbeaten on instances where n ≤ 2m.

In the literature there is still a tendency towards trying to improve neighbourhood
definitions or combining different search strategies in new and creative ways to obtain
better results. Since i-TSAB, however, none of these attempts have shown substantial
improvements. As we saw in sections 3.3 and 4.2, there are still sparse results on what
actually makes a good taboo search algorithm, just as the JSSP solution space could
very well reveal more interesting properties.

Another way to improve on the basics of the algorithms without inventing new and
even more complex neighbourhoods could be using more efficient data structures and
ways to do the massive amounts of calculations performed by almost all algorithms
today. Looking at data structures, representing the disjunctive graph is usually done in
various classic ways: neighbourhood matrices, predecessor lists, and successor lists. It
is mostly unclear from the literature what representation is used, as apparently little
focus is put on this subject. In [2] the authors propose a new and improved, compact
representation of the disjunctive graph model: the graph matrix. This matrix of size
O(n2) has all the benefits and properties of the three classic representations mentioned
before, while improving on the complexity of some of the operations performed on the
matrix. Experiments conducted using the graph matrix show remarkable decreases in
running time compared to the classic representations.
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6 Conclusions and Remarks

In this paper we have presented the job-shop scheduling problem (JSSP) and briefly
outlined its complexity, notation and representation. We have looked at various solution
techniques and compared these with each other as well as the highly efficient taboo
search metaheuristic. We have seen preliminarily that taboo search outperforms other
traditional heuristics as well as coming closer and closer to optimal solutions, as new
algorithms are developed.

Attention has been brought to the fact that determining what factors influence the
”difficulty” of certain JSSP instances is notoriously difficult to say anything about, except
for the number of optimal solutions.

Also, we have had a thorough look at neighbourhood definitions and their importance,
especially in taboo search. We saw that the N5 neighbourhood is a strong reason for the
success of more recent TS implementations, two of which we took an in-depth look at:
the TSAB and i-TSAB algorithms of Nowicki and Smutnicki.

Based on thorough computational experiments, it has been outlined that i-TSAB gets
its strength from both the N5 neighbourhood as well as a balanced use of intensification
and diversification. Finally, we have briefly outlined further possible research of taboo
search in a JSSP context.
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